Air-FRI: Acceleration of the FRI Protocol

on the GPU for zkSNARKSs
Tanmayi Jandhyala Dr. Guang Gong
PhD Student, Professor,
Faculty of Engineering, Faculty of Engineering,
University of Waterloo University of Waterloo
SAC 2025
13th August, 2025

2 WATERLOO S BTQ

Common applications of Blockchain

Financial Services Smart Contracts for trustless agreements Internet of things (IoT)

1/24

Blockchain

decentralized

open ledger

distributed

increased exposure
to traffic or timing analysis

persistent

transaction history
is permanently traceable

2/24

Linkability of on-chain transactions to real-world entities

Deanonymization in the Bitcoin P2P Network Deanonymization and linkability of cryptocurrency
transactions based on network analysis

Giulia Fanti and Pramod Viswanath Alex Biryukov Sergei Tikhomirov
University of Luxembourg University of Luxembourg
alex.biryukov@uni.lu sergey.s.tikhomirov@ gmail.com
Abstract

Recent attacks on Bitcoin's peer-to-peer (P2P) network demonstrated that its
transaction-flooding protocols, which are used to ensure network consistency,
may enable user deanonymization—the linkage of a user’s IP address with her
pseudonym in the Bitcoin network. In 2015, the Bitcoin community responded

to these attacks by changing the network’s flooding mechanism to a different Eﬂ I EEE] BECHRTI FOCITRES: SEEAR. SRHE: [BEE) STOH IBUSTHEES; ECTENCE: [CUCTURE: :IOERS; (HEACH LLEL
protocol, known as diffusion. However, it is unclear if diffusion actually improves
the system’s anonymity. In this paper, we model the Bitcoin networking stack and e

analyze its anonymity properties, both pre- and post-2015. The core problem is

one of epidemic source inference over graphs, where the observational model and

spreading mechanisms are informed by Bitcoin's implementation; notably, these I ‘d h B‘ - B st Th T k D h W b’ B' st Ch‘ld Ah S'

models have not been studied in the epidemic source detection literature before. nS| e t e ItCOIn U at 00 own t e e s Igge l Use Ite

We identify and analyze near-optimal source estimators. This analysis suggests

that Bitcoin's networking protocols (both pre- and post-2015) offer poor anonymity They thought their payments were untraceable. They couldn’t have been more wrong. The untold story of the case that shredded the myth of Bitcoin’s

properties on networks with a regular-tree topology. We confirm this claim in anonymity.
simulation on a 2015 snapshot of the real Bitcoin P2P network topology.

Deanonymisation of Clients in Bitcoin P2P Network

Alex Biryukov Dmitry Khovratovich lvan Pustogarov

University of Luxembourg
{alex.biryukov, dmitry.khovratovich, ivan.pustogarov}@uni.lu

3/24

Ensuring Privacy Through Zero-Knowledge

blockchain nodes using zero-knowledge proofs to hide transaction details

4/24

Enabling ZKPs

Zero-Knowledge: No additional information is disclosed beyond the validity of the statement.
Succinct: Proofs are short and efficient, even for complex computations.

Non-Interactive: Verification requires only a single proof submission without further
interaction.

Specific Applications to digital signatures: Allows users to prove ownership of private keys
without revealing them, also enhances security by preventing exposure of sensitive information
during the signing process.

Scalable Verification: Efficient proof verification reduces computational load on the
blockchain, while supporting the validation of large computations with minimal resource usage.

5/24

Overview of Polaris (Fu, Gong 22) .

GKR Protocol

ivari Poly-
R1CS Instance [—P» Vnivariate Toly —Pp Quad-check —P Lin-check

nomial Encoding

Polynomial Low-Degree

Commitment Test (LDT) ®

6/24

FRI Protocol [Ben+18a]

e Goal is to prove that the degree of a polynomial f(x) is less than d
deg(f(x)) <d
e The proof process is to iteratively reduce the degree by half at each step.
o Specifically, at each round of the protocol, the prover computes its
following codeword
e FRIis an interactive oracle proof where the verifier sends challenges x;
based on the prover’s responses.
e The prover commits to the folded polynomial using a Merkle tree.
e [n the final round, the verifier performs consistency checks on the reduced
polynomial.

7/24

FRI Protocol Overview

commit phase query phase round-consistency check
Prover commits to codewords derived verifier extracts
recursively from the polynomial e the commitments (merkle roots)and verifier iteratively checks for the merkle
challenges proofs of committed codewords

e final codeword

and has oracle access to intermediate
at eachround:

codewords
e sends a commitment of the codeword to the
verifier verifier checks computes the line equation for the points
e verifier issues arandom challenge e degree of the polynomial interpolated selected in the previous phase.
e prover constructs its following codeword from the final codeword
using a line computation equation any one check fails, and the proof is rejected

verifier randomly samples a point in the
linear subspace and computes ‘indices’
around it
o verifier consistency of consecutive
codewords at these indices

final codeword is sent directly to the
verifier.

8/24

So what's the problem?

e The FRI low-degree test uses large mathematical constraints, which in implementation, would involve
complex memory usage and data structures.

e For example, Preon, a zk-SNARK algorithm which is programmed in C, has the below prover and verifier
times for the FRI Protocol.

Metric Prover Time (seconds) | Verifier Time (seconds)
Average 135.83 1.65
Minimum 129.04 1.24
Maximum 212.68 3.12

Table 1: Preon’'s Prover and Verifier Times for L3 Parameters over 50 lterations
on the CPU

9/24

We identified performance-intensive parts of the protocol
and optimized them for implementation.

Pre-compute field inverses

fr(Lx|21]) — fr(Lg[24 + 1))
Lul2i] — Lp[2i + 1

(o™ — Ly[24]) + fu(Le[24]),

r\v can be pre-computed!

frr1(Lrtali]) =

L. : Domain of the current codeword.

a® ; Uniform random challenge from the verifier

Ly|2t] — Li|2¢ + 1] : basis element

11/24

Transforming the protcol to non-interactive [C0S20]

e The protocol leverages repeated hashing of the uniformly sampled element in each round
to eliminate direct interaction with the verifier.

e |nstead of transmitting intermediate data, the prover uses deterministic hash operations
to generate challenges.

o) = Hash(aY || root),

oFtY) = Hash(a®)

al®) . Challenge for the current round.
root : Merkle root of the codeword that is initially computed.

1 < k < r,where r is the number of rounds of the FRI protocol

12/24

Parallel computation of codeword elements on the GPU

e Each GPU thread computes elements of the codeword in parallel

fS,CI fs,%—1
|
f2,0 fa.1 Ja
f1,0 fi1 f12 Fi,x 4
|
f0,0 fo1 fo2 fo,3 fo4 fos fon-1 fon
| | | | | |
hio hi hi2 hy,x g
| |
ha0 ha1 hy 51
| | |
|
hs o g, % 1
hao

root

13/24

Integrated FRI Merkle Tree

e Combines RS codeword evaluations with a Merkle tree for scalability and security.
e Reduces the prover's overhead while ensuring verifier efficiency in zkSNARKS.

Structure of our specially-constructed tree

b root
[
hri10 Boppr, 24
|
hro Ry o e (%)-1
| V_I‘
fr10 | he1p () | Pron(3) last codeword
I
| | | [|
J20 | hao faa | hay fl,;%—l"
| | |
fio0 | hio fia | A fiz | hia S f Py
|
| | | | | | | | 1ar2a
foo foa foz2 fos foa fos fon—2 fo.n-1 initial codeword

Verification Process:

root
|
| I
hB.D ha,l
|
| | I
f2.0 hlﬂ fz;l hz‘ 1 f2,2 hz; f2.:i 5-2,3
| I | |
| | | | | | [I
fro | hio fig | hig fiz | hip fiz | hia fia | hig fis | has Jie | hig fir | b
foo fo, o2 fo3 Joa fos fos [for || fos foo || S || o | foaz foaa Jo4 fo.1s
rf
|
h.glu. h’3,1
I
| | I |
fapn | hao faa | has faz | hao f23 | hog
I |
| | | | | I I I
fro | hag fia | hig fiz | hap fiaz | haa Jia | hig fis | his fie | hig fiz | b,
I | |
| | | | | I | | | | | | | | | |
fo,0 fo foz2 foa foa fos fos foz fos foo foo fou foqa foua foa fos

15/24

Components of Air-FRI:

y N
[Fiat-Shamir
. Serialization |
h 4
.)
1
|
|
|
|
| Commit j
O y
y D\
':. Prover |
h y
y N
|., Query j
\\\--- /
/’ : __-..H\\.
| Verifier 7]
——)
. il
|
|
1
|
— v —
y h
: Domain Bases
" W

f/ \\
| Kernel Code \
p)
0 (GPU) 4
i
]
1
1
- * —

/" Field
'\._Operatloni/ﬁ
I
I
,f""_—l—_"'\
l.f’(Colinearity \-.l
\ Test J

\‘.
SHA3 ‘
. Functions
A >
A
1
I
1
1
1
X
|-/ Merkle Tree
Functions
. 4
|
1
|
1
1
1
1
|
l— ----------
1
1
,-"-—_ * _-\-"'x
/ Merkle Path \'~,

| Verification |

4

Polynomial

-

™

’\ Operations
N 4

16/24

Results

17/24

L3 Parameters Overview:

Parameter Value
Finite Field (L3) D2°6
Degree Tested 212
Expansion Factor 32
Least Codeword Length 2° (32)

Initial Codeword Length

217 (131072)

Number of Co-linearity Tests

14

Number of Codeword Reductions (Rounds) | 12
Merkle Tree Height 17
Hash Function Input Output 1024 — 256

S.No. | Category Iterations | Average (s) | Max (s) | Min (s)
1 C Code - No Optimizations 100 22.52 24.49 21.28
2 C Code - Precomputed Inverses 100 17.95 18.29 17.67
3 C Code - Verifiable FRI Merkle Tree 100 13.47 14.39 12.97
4 GPU Code - Parallel Line Computation 100 9.36 10.23 0.14
5 GPU Code - Parallel Line Computation & Verifiable Merkle Tree 100 1.49 1.63 1.46

Performance comparison on CPU vs GPU for L3

18/24

Time (Seconds)

(@)

N

N

FRI Degree Testing Time on the GPU with L3 Parameters

512 4,096 8,192 16,384 32,768
Degree Tested

19/24

Degree | CPU Time (s) | GPU Time (s) | Speedup Factor (%)
512 2.80 0.54 80.59%
1024 5.48 0.88 83.90%
2048 10.86 1.04 90.39%
4096 22.43 1.49 93.35%
8192 45.16 3.78 91.64%
16384 104.37 3.70 96.46%
32768 205.37 8.95 95.64%

Speedup Factor (%) of GPU over CPU for Various Degrees (L3)

Metric Prover Time | Verifier Time | Prover Time | Verifier Time
(Preon)(s) (Preon)(s) (GPU)(s) (GPU)(s)
Minimum 126.926 0.803 0.669 0.165
Maximum 139.683 1.167 0.674 0.167
Average 129.248 0.875 0.670 0.166

Comparison of Prover and Verifier Times between

Preon [Che+23] and Air-FRI for Degree 2%

20/24

Prover and verifier times measured over 10 iterations
on the GPU for L5 Parameters ([F5:x).

Metric Prover Time (s) | Verifier Time (s)
Minimum 13.85859 1.12372
Maximum 13.88316 1.12699
Average 13.87129 1.12488

e Thisshows significant promise in realizing our implementation in post-quantum secure algorithms
which require such large constraints and strong security levels.

21/24

Future Work

1. Further Reduction of Proof Size

> 9000

prover verifier

elements

Proof

2. Faster FFT Implementation: Integrating a more efficient FFT algorithm using special bases and subfield
structures could improve performance.

3. Zero-Knowledge Integration

interpolation FRI 1 0
polynomial —p codeword > I degree low

enough?

accept reject

degree low
enough?

mask

interpolation FRI)|
polynomial —p codeword > l

accept reject

22/24

Future Work Cont.

4. Establish soundness guarantees

b. Measure energy consumption of running this protocol on GPUs.

23/24

Open to questions!

