
Air-FRI: Acceleration of the FRI Protocol
on the GPU for zkSNARKs

SAC 2025

Tanmayi Jandhyala
PhD Student,

Faculty of Engineering,
University of Waterloo

Dr. Guang Gong
Professor,

Faculty of Engineering,
University of Waterloo

13th August, 2025

Common applications of Blockchain

1/24

decentralized

persistent

distributed

Blockchain

transaction history
is permanently traceable

open ledger

increased exposure
to traffic or timing analysis

2/24

Linkability of on-chain transactions to real-world entities

3/24

Ensuring Privacy Through Zero-Knowledge

blockchain nodes vulnerable to de-anonymization

blockchain nodes using zero-knowledge proofs to hide transaction details

4/24

Enabling ZKPs through zkSNARK algorithms

Zero-Knowledge: No additional information is disclosed beyond the validity of the statement.
Succinct: Proofs are short and efficient, even for complex computations.
Non-Interactive: Verification requires only a single proof submission without further
interaction.

Specific Applications to digital signatures: Allows users to prove ownership of private keys
without revealing them, also enhances security by preventing exposure of sensitive information
during the signing process.

Scalable Verification: Efficient proof verification reduces computational load on the
blockchain, while supporting the validation of large computations with minimal resource usage.

5/24

Overview of Polaris (Fu, Gong ‘22) .

6/24

FRI Protocol [Ben+18a]

Goal is to prove that the degree of a polynomial f(x) is less than

The proof process is to iteratively reduce the degree by half at each step.
Specifically, at each round of the protocol, the prover computes its
following codeword

FRI is an interactive oracle proof where the verifier sends challenges
based on the prover’s responses.
The prover commits to the folded polynomial using a Merkle tree.
In the final round, the verifier performs consistency checks on the reduced
polynomial.

7/24

FRI Protocol Overview

round-consistency checkcommit phase

Prover commits to codewords derived
recursively from the polynomial

at each round:

sends a commitment of the codeword to the
verifier
verifier issues a random challenge
prover constructs its following codeword
using a line computation equation

final codeword is sent directly to the
verifier.

query phase

verifier extracts
the commitments (merkle roots) and
challenges
final codeword

and has oracle access to intermediate
codewords

verifier checks
degree of the polynomial interpolated
from the final codeword

verifier randomly samples a point in the
linear subspace and computes ‘indices’
around it

verifier consistency of consecutive
codewords at these indices

verifier iteratively checks for the merkle
proofs of committed codewords

computes the line equation for the points
selected in the previous phase.

any one check fails, and the proof is rejected

8/24

So what’s the problem?
The FRI low-degree test uses large mathematical constraints, which in implementation, would involve
complex memory usage and data structures.

For example, Preon, a zk-SNARK algorithm which is programmed in C, has the below prover and verifier
times for the FRI Protocol.

 In order for zk-SNARK schemes which use FRI as one of their core components to be applied to
real-world privacy-preservation, they need to be efficient in their performance.

9/24

We identified performance-intensive parts of the protocol
and optimized them for implementation.

10/24

Pre-compute field inverses

can be pre-computed!

11/24

Transforming the protcol to non-interactive [COS20]

The protocol leverages repeated hashing of the uniformly sampled element in each round
to eliminate direct interaction with the verifier.
Instead of transmitting intermediate data, the prover uses deterministic hash operations
to generate challenges.

12/24

Parallel computation of codeword elements on the GPU

Each GPU thread computes elements of the codeword in parallel

13/24

Integrated FRI Merkle Tree
Combines RS codeword evaluations with a Merkle tree for scalability and security.
Reduces the prover’s overhead while ensuring verifier efficiency in zkSNARKs.

Structure of our specially-constructed tree

14/24

Verification Process:

15/24

Components of Air-FRI:

16/24

Results

17/24

Performance comparison on CPU vs GPU for L3

18/24

19/24

Speedup Factor (%) of GPU over CPU for Various Degrees (L3)

Comparison of Prover and Verifier Times between
Preon [Che+23] and Air-FRI for Degree

20/24

Prover and verifier times measured over 10 iterations
on the GPU for L5 Parameters ().

This shows significant promise in realizing our implementation in post-quantum secure algorithms
which require such large constraints and strong security levels.

21/24

Future Work

1. Further Reduction of Proof Size

2. Faster FFT Implementation: Integrating a more efficient FFT algorithm using special bases and subfield
structures could improve performance.

3. Zero-Knowledge Integration

22/24

4. Establish soundness guarantees

5. Measure energy consumption of running this protocol on GPUs.

Future Work Cont.

23/24

Open to questions!

24/24

