Efficient Full Domain Functional Bootstrapping from Recursive LUT Decomposition

Intak Hwang, Shinwon Lee, Seonhong Min, Yongsoo Song

Seoul National University

Fully Homomorphic Encryption

- Fully Homomorphic Encryption(FHE) enables direct computations on encrypted data.
- One of the most powerful tools for secure computation. (e.g. Privacy Preserving ML)

Various **FHE** schemes have been proposed based on the (R)LWE problem, such as **BGV**, **BFV**, **CKKS** and **TFHE**

TFHE – Fully Homomorphic Encryption over the Torus

While most FHE schemes focus on addition and multiplication,
TFHE supports arbitrary Boolean gate evaluation.

- Key advancement: Programmable Bootstrapping
 - Supports multi-bit ciphertexts
 - Enables complex lookup table(LUT) evaluation without extra computational cost
 - LUT should satisfy negacyclic condition

- The test vector $tv \in \mathbb{Z}_q[X]/(X^N+1)$ encodes the LUT values as its coefficients.
 - $tv = a_0 + a_1X + a_2X^2 + \dots + a_{N-1}X^{N-1}$

- The test vector $tv \in \mathbb{Z}_q[X]/(X^N+1)$ encodes the LUT values as its coefficients.
- Multiply tv by X^{-m} to shift the desired LUT value to the constant term. (BlindRotate)

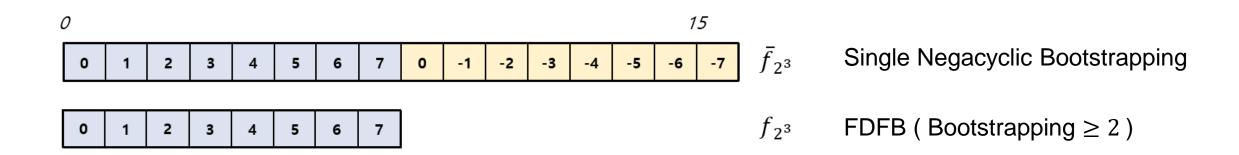
 - Then, we extract the constant term. (SampleExtract)

- The test vector $tv \in \mathbb{Z}_q[X]/(X^N+1)$ encodes the LUT values as its coefficients.
- Multiply tv by X^{-m} to shift the desired LUT value to the constant term. (BlindRotate)

 - Then, we extract the constant term. (SampleExtract)

Problem :
$$X^{-m+N} \cdot tv = -a_m - a_{m+1}X - a_{m+2}X^2 - \cdots + a_{m-1}X^{N-1}$$

- The lookup table (LUT) should satisfy the negacyclic condition.
 - Evaluated **LUT** f_N : $\mathbb{Z}_{2N} \to \mathbb{Z}_q$ should satisfy $f_N(i+N) = -f_N(i)$ for $i \in [0,N)$



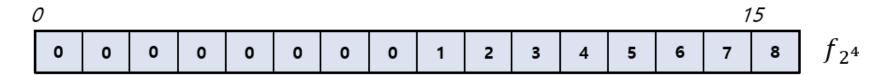
- Full Domain Functional bootstrapping (FDFB)
 - Supports arbitrary LUT evaluation without the negacyclic restriction
- Existing FDFB schemes require more than two bootstrappings
 - ~2× latency compared to single bootstrapping.

Our Contribution

- Propose a novel FDFB scheme based on a LUT decomposition structure
 - Up to ~2× faster than previous FDFB schemes
 - Negligible parameter overhead
 - Highly parallelizable

Decomposition of lookup table

- Key observation : LUT can be decomposed into smaller LUTs
 - For $f_{2^m}: \mathbb{Z}_{2^m} \to \mathbb{Z}_q$, $f_{2^m}(i) = f_{2^{m-1}}([i]_{2^{m-1}}) + \bar{f}_{2^{m-1}}(i)$
 - $f_{2^{m-1}}: \mathbb{Z}_{2^{m-1}} \to \mathbb{Z}_q$, Full domain LUT
 - $\bar{f}_{2^{m-1}}(i) \colon \mathbb{Z}_{2^m} \to \mathbb{Z}_q$, Negacyclic LUT



$$=$$
 $\begin{bmatrix} -0.5 & -1 & -1.5 & -2 & -2.5 & -3 & -3.5 & -4 & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 & 3.5 & 4 \end{bmatrix}$ \bar{f}_{2} 3

+ 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
$$f_{2^3}$$

Decomposition of lookup table

Key observation : LUT can be decomposed into smaller LUTs

• For
$$f_{2}m: \mathbb{Z}_{2}m \to \mathbb{Z}_{q}$$
, $f_{2}m(i) = f_{2}m-1([i]_{2}m-1) + \bar{f}_{2}m-1(i)$

•
$$f_{2^{m-1}}: \mathbb{Z}_{2^{m-1}} \to \mathbb{Z}_q$$
 $f_{2^{m-1}}(i) = \frac{1}{2} \{ f_{2^m}(i) + f_{2^m}(i+2^{m-1}) \}$

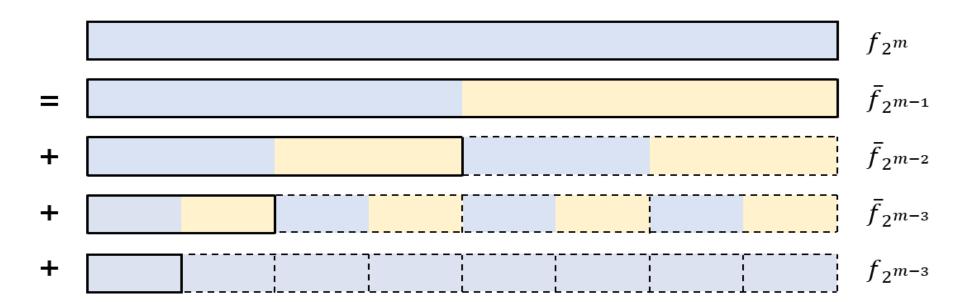
$$\bar{f}_{2^{m-1}}(i) \colon \mathbb{Z}_{2^m} \to \mathbb{Z}_{q} \quad \bar{f}_{2^{m-1}}(i) = \begin{cases} \frac{1}{2} \{ f_{2^m}(i) - f_{2^m}(i+2^{m-1}) \} & (0 \le i < 2^{m-1}) \\ -\bar{f}_{2^{m-1}}(i-2^{m-1}) & (2^{m-1} \le i < 2^m) \end{cases}$$

=
$$\begin{bmatrix} -0.5 & -1 & -1.5 & -2 & -2.5 & -3 & -3.5 & -4 & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 & 3.5 & 4 \end{bmatrix}$$
 \bar{f}_2

+ 0.5 1 1.5 2 2.5 3 3.5 4 0.5 1 1.5 2 2.5 3 3.5 4
$$f_2$$
3

Decomposition of lookup table

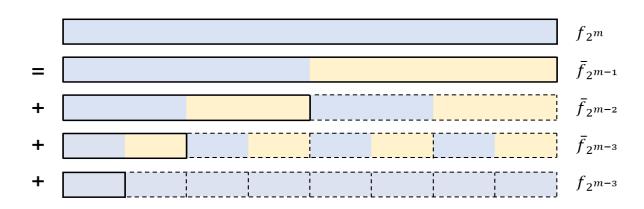
Key observation : LUT can be decomposed into smaller LUTs



Efficient FDFB with LUT Decomposition

$$f_{2m}(i) = \sum_{k=m-u}^{m-1} \bar{f}_{2k}([i]_{2k+1}) + f_{2m-\mu}([i]_{2m-\mu})$$

- Evaluate each \bar{f}_{2^k} and $f_{2^{m-\mu}}$ term, and then sum them to obtain f_{2^m}
 - Most of the computations are handled by fast negacyclic bootstrapping.
 - FDFB is applied only to $f_{2^{m-\mu}}$, which has the smallest domain.

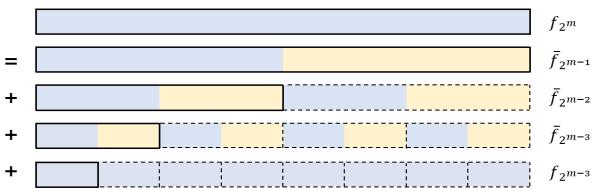


Efficient FDFB with LUT Decomposition

$$f_{2m}(i) = \sum_{k=m-\mu}^{m-1} \bar{f}_{2k}([i]_{2k+1}) + f_{2m-\mu}([i]_{2m-\mu})$$

Time complexity

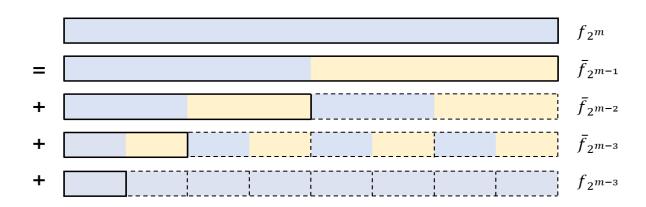
- Bootstrapping cost grows linearly w.r.t. the size of the LUT
- Previous: $2 \times 2^m = 2^{m+1}$ unit time
- Ours: $2^{m-1} + ... + 2^{m-\mu} + 2 \times 2^{m-\mu} = 2^m + 2^{m-\mu}$ unit time (2^{m-1}) with parallelism



Efficient FDFB with LUT Decomposition

$$f_{2m}(i) = \sum_{k=m-\mu}^{m-1} \bar{f}_{2k}([i]_{2k+1}) + f_{2m-\mu}([i]_{2m-\mu})$$

- Problem: Need to maintain distinct evaluation keys for each LUT length
 - RLWE dimension depends on the LUT length



Extended Bootstrapping (EBS)

- Extended Bootstrapping [LY23] (PKC 2023)
 - Rewrite polynomial operations in higher dimensions as several independent operations in lower dimensions via a module isomorphism.

$$\mathbb{Z}_q[X]/(X^{2^m}+1) \to \left(\mathbb{Z}_q[X]/(X^{2^{m-\nu}}+1)\right)^{2^{\nu}}$$

- "Simulates" operations over $N=2^m$ with operations over $N=2^{m-\nu}$
 - Operations are performed over reduced dimension $2^{m-\nu}$

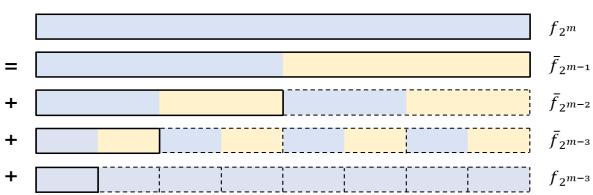
Optimization via Extended Bootstrapping

$$f_{2m}(i) = \sum_{k=m-\mu}^{m-1} \bar{f}_{2k}([i]_{2k+1}) + f_{2m-\mu}([i]_{2m-\mu})$$

EBS enables all operations to run within a fixed ring dimension.

Evaluation Key Size

- Key Size grows linearly w.r.t. the RLWE degree
- Without EBS: $2^{m-1} + ... + 2^{m-\mu} = 2^m 2^{m-\mu}$ unit size
- With EBS: $2^{m-\mu}$ unit size



Implementation

- Used the TFHE-go library
 - Single-threaded execution
- Compared with FDFB-Compress (TCHES 2024)
- Evaluated with plaintext modulus p from 2⁵ to 2⁸
 - $N = 2^{12}$ to 2^{15}
- The decomposition depth μ is set as large as possible while preserving RLWE security.
 - Reduced RLWE dimension $N/2^{\mu} \ge 2^{11}$

Experimental Results

		$p = 2^5$	$p = 2^6$	$p = 2^{7}$	$p = 2^8$
Non-EBS	FDFB-Compress	79 ms	297 ms	$655~\mathrm{ms}$	1470 ms
	Ours	$59 \mathrm{\ ms}$	$146~\mathrm{ms}$	$300 \mathrm{\ ms}$	648 ms
EBS	FDFB-Compress	70 ms	$134 \mathrm{\ ms}$	$393~\mathrm{ms}$	823 ms
	Ours	$57~\mathrm{ms}$	91 ms	$234 \mathrm{\ ms}$	431 ms

Table 3. FDFB performance for each plaintext modulus p.

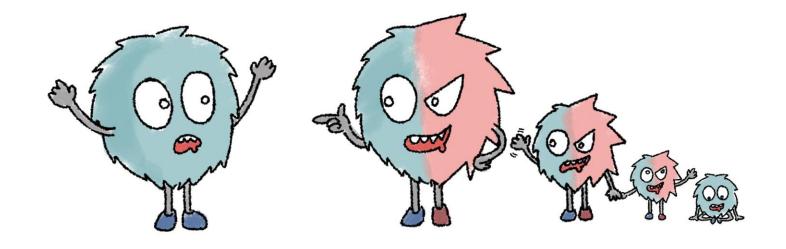
- Up to 1.91× faster than FDFB-Compress
- Only 4.7% slower than a single negacyclic bootstrapping

Experimental Results

		$p = 2^{5}$	$p = 2^{6}$	$p = 2^{7}$	$p = 2^{8}$
Non-EBS	FDFB-Compress	$254~\mathrm{MB}$	798 MB	$1.56~\mathrm{GB}$	3.12 GB
	Ours	127 MB	598 MB	1.36 GB	2.98 GB
EBS	FDFB-Compress	127 MB		199 MB	
	Ours				

Table 4. Bootstrapping key size for each plaintext modulus.

- Key size growth is efficiently mitigated with EBS
 - No additional key size growth



Thank you for listening!