
Efficient Full Domain Functional Bootstrapping from
Recursive LUT Decomposition

Intak Hwang, Shinwon Lee, Seonhong Min, Yongsoo Song

Seoul National University

1

2

Fully Homomorphic Encryption

▪ Fully Homomorphic Encryption(FHE) enables direct computations on encrypted data.

▪ One of the most powerful tools for secure computation. (e.g. Privacy Preserving ML)

Various FHE schemes have been proposed based on the (R)LWE problem,

such as BGV, BFV, CKKS and TFHE

3

TFHE – Fully Homomorphic Encryption over the Torus

▪ While most FHE schemes focus on addition and multiplication,

TFHE supports arbitrary Boolean gate evaluation.

▪ Key advancement: Programmable Bootstrapping

▪ Supports multi-bit ciphertexts

▪ Enables complex lookup table(LUT) evaluation without extra computational cost

▪ LUT should satisfy negacyclic condition

4

Programmable Bootstrapping – Negacyclic constraint

▪ The test vector 𝑡𝑣 ∈ ℤ𝑞[𝑋]/(𝑋
𝑁 + 1) encodes the LUT values as its coefficients.

▪ 𝑡𝑣 = 𝑎0 + 𝑎1𝑋 + 𝑎2𝑋
2 +⋯+ 𝑎𝑁−1𝑋

𝑁−1

5

Programmable Bootstrapping – Negacyclic constraint

▪ The test vector 𝑡𝑣 ∈ ℤ𝑞[𝑋]/(𝑋
𝑁 + 1) encodes the LUT values as its coefficients.

▪ 𝑡𝑣 = 𝑎0 + 𝑎1𝑋 + 𝑎2𝑋
2 +⋯+ 𝑎𝑁−1𝑋

𝑁−1

▪ Multiply 𝑡𝑣 by 𝑋−𝑚 to shift the desired LUT value to the constant term. (BlindRotate)

▪ 𝑋−𝑚 ⋅ 𝑡𝑣 = 𝑎𝑚 + 𝑎𝑚+1𝑋 + 𝑎𝑚+2𝑋
2 +⋯− 𝑎𝑚−1𝑋

𝑁−1

▪ Then, we extract the constant term. (SampleExtract)

6

Programmable Bootstrapping – Negacyclic constraint

▪ The test vector 𝑡𝑣 ∈ ℤ𝑞[𝑋]/(𝑋
𝑁 + 1) encodes the LUT values as its coefficients.

▪ 𝑡𝑣 = 𝑎0 + 𝑎1𝑋 + 𝑎2𝑋
2 +⋯+ 𝑎𝑁−1𝑋

𝑁−1

▪ Multiply 𝑡𝑣 by 𝑋−𝑚 to shift the desired LUT value to the constant term. (BlindRotate)

▪ 𝑋−𝑚 ⋅ 𝑡𝑣 = 𝑎𝑚 + 𝑎𝑚+1𝑋 + 𝑎𝑚+2𝑋
2 +⋯− 𝑎𝑚−1𝑋

𝑁−1

▪ Then, we extract the constant term. (SampleExtract)

Problem : 𝑋−𝑚+𝑁 ⋅ 𝑡𝑣 = −𝑎𝑚 − 𝑎𝑚+1𝑋 − 𝑎𝑚+2𝑋
2 −⋯+ 𝑎𝑚−1𝑋

𝑁−1

▪ The lookup table (LUT) should satisfy the negacyclic condition.

▪ Evaluated LUT 𝑓𝑁: ℤ2N → ℤq should satisfy 𝑓𝑁 𝑖 + 𝑁 = −𝑓𝑁 𝑖 for 𝑖 ∈ [0, 𝑁)

7

Programmable Bootstrapping – Negacyclic constraint

▪ Full Domain Functional bootstrapping (FDFB)

▪ Supports arbitrary LUT evaluation without the negacyclic restriction

▪ Existing FDFB schemes require more than two bootstrappings

▪ ~2× latency compared to single bootstrapping.

Single Negacyclic Bootstrapping

FDFB (Bootstrapping ≥ 2)

8

Our Contribution

▪ Propose a novel FDFB scheme based on a LUT decomposition structure

▪ Up to ~2× faster than previous FDFB schemes

▪ Negligible parameter overhead

▪ Highly parallelizable

9

Decomposition of lookup table

▪ Key observation : LUT can be decomposed into smaller LUTs

▪ For 𝑓2𝑚: ℤ2𝑚 → ℤq, 𝑓2𝑚 𝑖 = 𝑓2𝑚−1 𝑖 2𝑚−1 + ҧ𝑓2𝑚−1 𝑖

▪ 𝑓2𝑚−1: ℤ2𝑚−1 → ℤq, Full domain LUT

▪ ҧ𝑓2𝑚−1 𝑖 : ℤ2𝑚 → ℤq, Negacyclic LUT

10

Decomposition of lookup table

▪ Key observation : LUT can be decomposed into smaller LUTs

▪ For 𝑓2𝑚: ℤ2𝑚 → ℤq, 𝑓2𝑚 𝑖 = 𝑓2𝑚−1 𝑖 2𝑚−1 + ҧ𝑓2𝑚−1 𝑖

▪ 𝑓2𝑚−1: ℤ2𝑚−1 → ℤq 𝑓2𝑚−1 𝑖 =
1

2
{𝑓2𝑚 𝑖 + 𝑓2𝑚 𝑖 + 2𝑚−1 }

▪ ҧ𝑓2𝑚−1 𝑖 : ℤ2𝑚 → ℤq ҧ𝑓2𝑚−1 𝑖 = ቐ

1

2
𝑓2𝑚 𝑖 − 𝑓2𝑚 𝑖 + 2𝑚−1 (0 ≤ 𝑖 < 2𝑚−1)

− ҧ𝑓2𝑚−1 𝑖 − 2𝑚−1 (2𝑚−1 ≤ 𝑖 < 2𝑚)

Decomposition of lookup table

▪ Key observation : LUT can be decomposed into smaller LUTs

▪ For 𝑓2𝑚: ℤ2𝑚 → ℤq, 𝑓2𝑚 𝑖 = 𝑓2𝑚−1 𝑖 2𝑚−1 + ҧ𝑓2𝑚−1 𝑖

= ෍

𝑘=𝑚−𝜇

𝑚−1

ҧ𝑓2𝑘(𝑖 2𝑘+1) + 𝑓2𝑚−𝜇(𝑖 2𝑚−𝜇)

apply decomposition

𝜇 times recursively

11

Efficient FDFB with LUT Decomposition

▪ Evaluate each ҧ𝑓2𝑘 and 𝑓2𝑚−𝜇 term, and then sum them to obtain 𝑓2𝑚

▪ Most of the computations are handled by fast negacyclic bootstrapping.

▪ FDFB is applied only to 𝑓2𝑚−𝜇 , which has the smallest domain.

𝑓2𝑚(𝑖) = ෍

𝑘=𝑚−𝜇

𝑚−1

ҧ𝑓2𝑘(𝑖 2𝑘+1) + 𝑓2𝑚−𝜇(𝑖 2𝑚−𝜇)

12

Efficient FDFB with LUT Decomposition

▪ Time complexity

▪ Bootstrapping cost grows linearly w.r.t. the size of the LUT

▪ Previous: 2 × 2𝑚 = 𝟐𝒎+𝟏 unit time

▪ Ours: 2𝑚−1 + … + 2𝑚−𝜇 + 2 × 2𝑚−𝜇 = 𝟐𝒎 + 𝟐𝒎−𝝁 unit time (𝟐𝒎−𝟏 with parallelism)

𝑓2𝑚(𝑖) = ෍

𝑘=𝑚−𝜇

𝑚−1

ҧ𝑓2𝑘(𝑖 2𝑘+1) + 𝑓2𝑚−𝜇(𝑖 2𝑚−𝜇)

13

Efficient FDFB with LUT Decomposition

▪ Problem: Need to maintain distinct evaluation keys for each LUT length

▪ RLWE dimension depends on the LUT length

𝑓2𝑚(𝑖) = ෍

𝑘=𝑚−𝜇

𝑚−1

ҧ𝑓2𝑘(𝑖 2𝑘+1) + 𝑓2𝑚−𝜇(𝑖 2𝑚−𝜇)

14

Extended Bootstrapping (EBS)

▪ Extended Bootstrapping [LY23] (PKC 2023)

▪ Rewrite polynomial operations in higher dimensions as several independent operations in

lower dimensions via a module isomorphism.

▪ “Simulates” operations over 𝑁 = 2𝑚 with operations over 𝑁 = 2𝑚−𝜈

▪ Operations are performed over reduced dimension 2𝑚−𝜈

15

Optimization via Extended Bootstrapping

▪ EBS enables all operations to run within a fixed ring dimension.

𝑓2𝑚(𝑖) = ෍

𝑘=𝑚−𝜇

𝑚−1

ҧ𝑓2𝑘(𝑖 2𝑘+1) + 𝑓2𝑚−𝜇(𝑖 2𝑚−𝜇)

▪ Evaluation Key Size

▪ Key Size grows linearly w.r.t. the RLWE degree

▪ Without EBS : 2𝑚−1 + …+ 2𝑚−𝜇 = 𝟐𝒎 − 𝟐𝒎−𝝁 unit size

▪ With EBS: 𝟐𝒎−𝝁 unit size

16

Implementation

▪ Used the TFHE-go library

▪ Single-threaded execution

▪ Compared with FDFB-Compress (TCHES 2024)

▪ Evaluated with plaintext modulus p from 25 to 28

▪ 𝑁 = 212 to 215

▪ The decomposition depth 𝜇 is set as large as possible while preserving RLWE security.

▪ Reduced RLWE dimension N/2𝜇 ≥ 211

17

Experimental Results

▪ Up to 1.91× faster than FDFB-Compress

▪ Only 4.7% slower than a single negacyclic bootstrapping

18

Experimental Results

▪ Key size growth is efficiently mitigated with EBS

▪ No additional key size growth

19

20

Thank you for listening!

	슬라이드 1: Efficient Full Domain Functional Bootstrapping from Recursive LUT Decomposition
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19
	슬라이드 20

