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o] Implementation security of PQC against worst-case side-channel attacks
such as SPA and SASCA

= Analyze Redundant Number Representation (RNR) as a countermeasure
against SPA

Lt Mutual Information Analysis of RNR for arbitrary integer ring sizes.

2 Application of RNR to ML-KEM resulting in 62.8% overhead for the NTT
and 0% overhead for the INTT.

© Demonstrate countermeasure effectiveness in both against the strongest
known SPA attack on ML-KEM.
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The Side-channel Problem

Cryptographic algorithms can be secure from a “black box” view, but insecure
when implemented in the real-world due to physical effects.
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Motivation cont.

Public-key
CRYSTALS-Dilithium
CRYSTALS-Kyber

Symmetric-key
Advanced Encryption Standard (AES)
Secure Hash Algorithm (SHA)

= Kyber and Dilithium are
standardized by NIST as ML-KEM
and ML-DSA.

Software and Firmware Updates
Xtended Merkle Signature Scheme (XMSS)
Leighton-Micali Signature (LMS)
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Public-key
CRYSTALS-Dilithium
CRYSTALS-Kyber

Symmetric-key
Advanced Encryption Standard (AES)
Secure Hash Algorithm (SHA)

= Kyber and Dilithium are
standardized by NIST as ML-KEM
and ML-DSA.

Software and Firmware Updates
Xtended Merkle Signature Scheme (XMSS)
Leighton-Micali Signature (LMS)

Side-channel attacks are still a problem despite quantum resistance...
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= Chosen Ciphertext k-trace attack of Hamburg et al. [Ham+21]
®  One of the strongest known attacks on ML-KEM.

m  Possible with only a few measurements via Soft-analytical Side-channel
Analysis (SASCA).

m  Even against CCA2-secure masked implementations...
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ML-KEM.PKE Decryption

Input: ciphertextc = (c1,¢,),sk =3

Output: messagem € R,
1: (u,v) = (Decompress(c;), Decompress(c;))
2: returnm = v — NTT*(8T o NTT(v))
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ML-KEM.PKE Decryption

Input: ciphertextc = (c1,¢,),sk =3
Output: messagem € R,
1: (u,v) = (Decompress(c;), Decompress(c;))
2: returnm = v — NTT (87 o NTT(v))
~————

sparse product

Chosen Ciphertext k-trace attack

Chosen ciphertexts enable divide-and-conquer recovery of § from the NTT! of
the sparse product.
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Input: f € Z3°
Output: f € Zé‘r’s
: f <—?
: k<« 127,/ 0
: forlen <— 2;len < 128;len < 2 -len do
for start <— 0; start < 256; start < j + len do
forj < start;j < start 4 len;j + + do
tf
f; < barrett_reduce(t + fi1en)
7?'+len A fj+len —t
fi+1en +— montgomery_reduce(C¥ - £ ien)
k< k-1
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Input: f € Z3°
Output: f € Zé‘r’s
o f <—?
: k<« 127,/ 0
: forlen «+ 2;len < 128;len + 2-len do > 7 layers
for start < 0; start < 256; start < j + len do > 256 coeffs.
forj < start;j < start 4 len;j + + do > Select coeff. pairs
t < f > GS-Butterfly
f; < barrett_reduce(t + fi1en)
73'+len A f)'Jrlen —t
fi+1en +— montgomery_reduce(C¥ - £ ien)
k+ k—1
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1 Yo =Xo + ¢x1modqg A
Foa(Xo, X1, Y0, Y1) = Y1 =X — ¢xymodgq

0 otherwise
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Simulated k-trace attack on the ML-KEM NTT!
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= Operates in a Polynomial ring with coefficients in Z; g = 3329
= log,q ~ 11.7-bits @ stored in 16-bit machine representations.
= Efficientimplementations represent the integers in the signed range

IEINEL

Rishub Nagpal



What’s Wrong? - A Closer Look at ML-KEM isec tugraz.at M

= The signed representation of the Polynomial ring makes Barrett and
Montgomery reductions more efficient.

Rishub Nagpal



What’s Wrong? - A Closer Look at ML-KEM isec tugraz.at M

= The signed representation of the Polynomial ring makes Barrett and
Montgomery reductions more efficient.

= Great performance optimization! Less instructions, enables lazy reductions
etc.

Rishub Nagpal



What’s Wrong? - A Closer Look at ML-KEM isec tugraz.at M

= The signed representation of the Polynomial ring makes Barrett and
Montgomery reductions more efficient.

= Great performance optimization! Less instructions, enables lazy reductions
etc.

= Sounds great, but...

Rishub Nagpal



What’s Wrong? - A Closer Look at ML-KEM isec tugraz.at M

= The signed representation of the Polynomial ring makes Barrett and
Montgomery reductions more efficient.

= Great performance optimization! Less instructions, enables lazy reductions
etc.

= Sounds great, but...

Rishub Nagpal



What’s Wrong? - A Closer Look at ML-KEM isec tugraz.at M

= The signed representation of the Polynomial ring makes Barrett and
Montgomery reductions more efficient.

= Great performance optimization! Less instructions, enables lazy reductions
etc.

= Sounds great, but...

Side-channel Distinguisher [TMS24]

Small integer ranges (relative to the machine-word size) will have a large
Hamming weight disparity between positive and negative numbers.
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m Unsigned
w1 Signed

0 16
Hamming weights of Z,
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255
i=0

Input polynomial: X = (X;):>, where X; € Z,,.
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Input polynomial: X = (X;)>>> where X; € Z,.

Total Entropy: H [X] = >, H [Xi] = 2995.4 bits.
Adversary must learn: H[X] — >, I [X;; W (X;)]

+ Signed + Unsigned
m ~ 2083.8 bhits. B~ 2289.9 bits.

Adversary learns =~ 206.092 bits just from signed representation!

Rishub Nagpal
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k-trace Attack on ML-KEM
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Redundant Number Representation (RNR)

16-bit word
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Zyg

Overflow
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= Encodex € Z,tox' € Z,q wherex’ = x + Kq where K is sampled uniformly
from [0, 7).
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Applying RNR on ML-KEM isec.tugraz.at M

= Encodex € Z,tox' € Z,q wherex’ = x + Kq where K is sampled uniformly
from [0, 7).

= The algorithm operates on 1 redundant encodings of Z,
= Ex:0 € Z, = {0,3329,6658, ..., (1 — 1)q}
= Works for signed representations too!

n encodings means upto 1 unique Hamming weights for a given x - Makes SPA
harder!

Rishub Nagpal
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Redundant Number Representation
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—— Signed
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Simulated k-trace attack on the ML-KEM RNR-NTT!
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k-trace Attack on a ARM Cortex-M4 - SNR
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k-trace Attack on a ARM Cortex-M4 - SASCA Result
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Implementation

KCycles (-10%)

-00 Overhead -03 Overhead

Signed-NTT 127.02 26.48
Unsigned-NTT 158.00 36.75

RNRE-NTT 196.01  42.7% 50.70  62.8%
RNR*-NTT 260.52  49.0% 84.74  79.0%
Signed-NTT! 202.04 42.61
Unsigned-NTT  270.39 64.91

RNRE-NTT! 203.19 0.6% 4261 0%
RNRT-NTT! 30559  12.2% 91.15  27.7%
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Comparison to Shuffling [Rav+20]

N ,
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KCycles (x10%)

Countermeasures Shuffle Algo. Count  Overhead Shuffle Rand.
(%)
Kyber NTT
Unprotected NA 31.0 - - -
Coarse-Full-Shuffled 87.2 181.1 16.6 (19% 38.4 (44.1%
Coarse-In-Group-Shuffle Knuth-Yates 84.4 172.2 17.1 (;0.371) 32.4 E38.4%§
Basic-Fine-Shuffled Arith, cswap 76.7 147.4 35.1 (45.7%) 9.5 (12.4%)
Bitwise-Fine-Shuffle 142.6 356 100.1 (70.2%) 9.5 (6.7%)
Kyber INTT
Unprotected NA 50.6 - - -
Coarse-Full-Shuffled KnuthYVates 113.3 123.8 16.6 (14.6%) 38.4 (33.9%)
Coarse-In-Group-Shuffled 101.2 99.9 16 (15.8%) 33 (32.6%)
Basic-Fine-Shuffled . 101.8 101.1 40.9 (40.1%) 9.5 (9.4%)
o . Arith. cswap
Bitwise-Fine-Shuffled 172.4 240.8 102.2 (59.3%) 9.6 (5.5%)

Rishub Nagpal
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© Even small performance optimizations can have unforseen and impactful
consequences.

© RNRis sufficient at preventing the strongest known SPA attack against ML-KEM.
Can be achieved with a low performance impact and simple to implement!

ENE

4 rishub. nagpal@tugraz.at :
©) https://github.com/rishubn/rnr-kyber-spa 'E
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ntq’
ntq+ ( 56 +n+q> +q<2
q2
nt- <2q+ﬁ> <2 —gq (1)
232 _ 216q
Tt = 1210
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Number Theoretic Transform

An algorithm analogous to the Discrete Fourier Transform (DFT) which allows one to
compute the product of two polynomials efficiently.

= |n ML-KEM:
m  Factors degree-256 polynomials with small 128 degree-2 polynomials

127

(X256 + l) _ H (XZ _ CZH—l) ’

i=0

where (" is the n-th root-of-unity.

Rishub Nagpal



Modeling the ML-KEM NTT

127 127
5 2i+1)] ~ 2i+1)j
ai = Z szC( y and @it1 = Z 02j+1C( A
=0 j=0

Multiplication of polynomials: NTT-X(NTT(f) o NTT(g)).

Rishub Nagpal
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