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isec.tugraz.atProblem Statement and Contributions

- Implementation security of PQC against worst-case side-channel attacks
such as SPA and SASCA

Analyze Redundant Number Representation (RNR) as a countermeasure
against SPA
¡ Mutual Information Analysis of RNR for arbitrary integer ring sizes.

Ô Application of RNR to ML-KEM resulting in 62.8% overhead for the NTT
and 0% overhead for the INTT.

è Demonstrate countermeasure effectiveness in both against the strongest
known SPA attack on ML-KEM.
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isec.tugraz.atMotivation

The Side-channel Problem

Cryptographic algorithms can be secure from a “black box” view, but insecure
when implemented in the real-world due to physical effects.
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isec.tugraz.atMotivation cont.

Kyber and Dilithium are
standardized by NIST as ML-KEM
and ML-DSA.

Side-channel attacks are still a problem despite quantum resistance. . .
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isec.tugraz.atMotivation cont.

Chosen Ciphertext k-trace attack of Hamburg et al. [Ham+21]

One of the strongest known attacks on ML-KEM.
Possible with only a few measurements via Soft-analytical Side-channel
Analysis (SASCA).
Even against CCA2-secure masked implementations. . .
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isec.tugraz.atk-trace attack of Hamburg et al. [Ham+21]

ML-KEM.PKE Decryption

Input: ciphertext c = (c1, c2), sk = ŝ
Output: message m ∈ Rq

1: (u, v) = (Decompress(c1), Decompress(c2))
2: return m = v − NTT-1(ŝT ◦ NTT(u))

Chosen Ciphertext k-trace attack

Chosen ciphertexts enable divide-and-conquer recovery of ŝ from the NTT-1 of
the sparse product.
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isec.tugraz.atModeling the ML-KEM NTT-1

Input: f̂ ∈ Z256
q

Output: f ∈ Z256
q

1: f ← f̂
2: k← 127; j← 0
3: for len← 2; len ≤ 128; len← 2 · len do

▷ 7 layers

4: for start← 0; start < 256; start← j + len do

▷ 256 coeffs.

5: for j← start; j < start + len; j ++ do

▷ Select coeff. pairs

6: t← fj

▷ GS-Butterfly

7: fj ← barrett_reduce(t + fj+len)
8: fj+len ← fj+len − t
9: fj+len ← montgomery_reduce(ζk · fj+len)

10: k← k − 1
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isec.tugraz.atModeling the ML-KEM NTT-1
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isec.tugraz.atModeling the ML-KEM NTT-1

F▷◁(x0, x1, y0, y1) =

1
y0 = x0 + ζx1 mod q ∧
y1 = x0 − ζx1 mod q

0 otherwise
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isec.tugraz.atSimulated k-trace attack on the ML-KEM NTT-1
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isec.tugraz.atSimulated k-trace attack on the ML-KEM NTT-1
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isec.tugraz.atWhat’s Wrong? - A Closer Look at ML-KEM

Operates in a Polynomial ring with coefficients in Zq; q = 3329

log2 q ≈ 11.7-bits stored in 16-bit machine representations.
Efficient implementations represent the integers in the signed range[⌊−q

2

⌋
,
⌈q

2

⌉)
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isec.tugraz.atWhat’s Wrong? - A Closer Look at ML-KEM

The signed representation of the Polynomial ring makes Barrett and
Montgomery reductions more efficient.

Great performance optimization! Less instructions, enables lazy reductions
etc.
Sounds great, but. . .

Side-channel Distinguisher [TMS24]

Small integer ranges (relative to the machine-word size) will have a large
Hamming weight disparity between positive and negative numbers.
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isec.tugraz.atHamming Weight Distributions of Zq

0 16
Hamming weights of Zq
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isec.tugraz.atMutual Information Analysis of Machine Representations
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isec.tugraz.atMutual Information Analyis of the ML-KEM NTT

1 Input polynomial: X = (Xi)
255
i=0 where Xi ∈ Zq.

2 Total Entropy: H [X] =
∑

X H [Xi] ≈ 2995.4 bits.
3 Adversary must learn: H [X]−

∑
X I [Xi;W (Xi)]

± Signed
≈ 2083.8 bits.

+ Unsigned
≈ 2289.9 bits.

Adversary learns ≈ 206.092 bits just from signed representation!
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isec.tugraz.atk-trace Attack on ML-KEM
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Redundant Number Representation
Application to ML-KEM
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16-bit word

0 216 − 1
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isec.tugraz.atRedundant Number Representation (RNR)

16-bit word
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isec.tugraz.atApplying RNR on ML-KEM

Encode x ∈ Zq to x′ ∈ Zηq where x′ = x + Kq where K is sampled uniformly
from [0, η).

The algorithm operates on η redundant encodings of Zq

Ex: 0 ∈ Zq ≡ {0, 3329, 6658, . . . , (η − 1)q}
Works for signed representations too!

Outcome

η encodings means upto η unique Hamming weights for a given x - Makes SPA
harder!
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isec.tugraz.atHamming weight distriubtions of RNR

0 16
Hamming weights of Zq
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isec.tugraz.atRedundant Number Representation
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isec.tugraz.atSimulated k-trace attack on the ML-KEM RNR-NTT-1
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isec.tugraz.atk-trace Attack on a ARM Cortex-M4 - SNR
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isec.tugraz.atk-trace Attack on a ARM Cortex-M4 - PI Estimate
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isec.tugraz.atk-trace Attack on a ARM Cortex-M4 - SASCA Result
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isec.tugraz.atImplementation and Performance Results

Implementation KCycles (·103)

-00 Overhead -03 Overhead

Signed-NTT 127.02 26.48
Unsigned-NTT 158.00 36.75
RNR±-NTT 196.01 42.7% 50.70 62.8%
RNR+-NTT 260.52 49.0% 84.74 79.0%

Signed-NTT-1 202.04 42.61
Unsigned-NTT-1 270.39 64.91
RNR±-NTT-1 203.19 0.6% 42.61 0%
RNR+-NTT-1 305.59 12.2% 91.15 27.7%
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isec.tugraz.atComparison to Shuffling [Rav+20]
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³ Even small performance optimizations can have unforseen and impactful
consequences.

³ RNR is sufficient at preventing the strongest known SPA attack against ML-KEM.
� Can be achieved with a low performance impact and simple to implement!

# rishub.nagpal@tugraz.at

§ https://github.com/rishubn/rnr-kyber-spa

27 Rishub Nagpal

https://eprint.iacr.org/2025/679


isec.tugraz.atAcknowledgments

This research was funded in whole or in part by the Austrian Science Fund (FWF) (FWF SFB
project SPyCoDe 10.55776/F85) and the Austrian Research Promotion Agency (FFG) via the
AWARE project (FFG grant number 891092).

28 Rishub Nagpal



isec.tugraz.atBibliography

[Ham+21] Mike Hamburg et al. Chosen Ciphertext k-Trace Attacks on Masked CCA2 Secure
Kyber. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021.4 (2021), pp. 88–113. DOI:
10.46586/TCHES.V2021.I4.88-113. URL:
https://doi.org/10.46586/tches.v2021.i4.88-113.

[Rav+20] Prasanna Ravi et al. On Configurable SCA Countermeasures Against Single Trace
Attacks for the NTT - A Performance Evaluation Study over Kyber and Dilithium on
the ARM Cortex-M4. Security, Privacy, and Applied Cryptography Engineering - 10th
International Conference, SPACE 2020, Kolkata, India, December 17-21, 2020,
Proceedings. Ed. by Lejla Batina, Stjepan Picek, and Mainack Mondal. Vol. 12586.
Lecture Notes in Computer Science. Springer, 2020, pp. 123–146. DOI:
10.1007/978-3-030-66626-2\_7. URL:
https://doi.org/10.1007/978-3-030-66626-2%5C_7.

[TMS24] Tolun Tosun, Amir Moradi, and Erkay Savas. Exploiting the Central Reduction in
Lattice-Based Cryptography. IEEE Access 12 (2024), pp. 166814–166833. DOI:
10.1109/ACCESS.2024.3494593. URL:
https://doi.org/10.1109/ACCESS.2024.3494593.

29 Rishub Nagpal

https://doi.org/10.46586/TCHES.V2021.I4.88-113
https://doi.org/10.46586/tches.v2021.i4.88-113
https://doi.org/10.1007/978-3-030-66626-2\_7
https://doi.org/10.1007/978-3-030-66626-2%5C_7
https://doi.org/10.1109/ACCESS.2024.3494593
https://doi.org/10.1109/ACCESS.2024.3494593


Backup Slides



isec.tugraz.atDerivation of η

η+q +

(
η+q2

216 + η+q
)
+ q < 216

η+ ·
(

2q +
q2

216

)
< 216 − q

η+ <
232 − 216q
217q + q2 < 10

(1)
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Number Theoretic Transform

An algorithm analogous to the Discrete Fourier Transform (DFT) which allows one to
compute the product of two polynomials efficiently.

In ML-KEM:

Factors degree-256 polynomials with small 128 degree-2 polynomials

(x256 + 1) =
127∏
i=0

(
x2 − ζ2i+1) ,

where ζn is the n-th root-of-unity.
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NTT(a) = â = â0 + â1x + . . . â255x255,

âi =
127∑
j=0

a2jζ
(2i+1)j and â2i+1 =

127∑
j=0

a2j+1ζ
(2i+1)j.

Multiplication of polynomials: NTT-1(NTT(f ) ◦ NTT(g)).
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