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Artificial Intelligence

What is Intelligence?

Lat. intelligere – understand, comprehend.

Intelligence is a descriptive concept – it describes certain
properties of an individual or a group of individuals.

There is no consensus on the definition of intelligence.

Most definitions include concepts such as abstract reasoning,
understanding, self-consciousness, communication, learning,
planning, and problem solving.
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Artificial Intelligence

What is Artificial Intelligence?

A branch of computer science: Technical Sciences �
Computer Science � Artificial Intelligence.

The branches of Artificial Intelligence (according to ACM):

1 General AI (cognitive modeling, philosophical foundations)
2 Expert systems and applications
3 Automated programming
4 Deduction and theorem proving
5 Formalisms and methods for knowledge representation
6 Machine learning
7 Understanding and processing of natural and artificial

languages
8 Problem solving, control methods, and state space search
9 Robotics
10 Computer vision, pattern recognition, and scene analysis
11 Distributed artificial intelligence
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Artificial Intelligence

The name “Artificial Intelligence”

AI as an independent research area was established in 1956 at
the Dartmouth Conference (10 scientists, 2 months)

“...The study is to proceed on the basis of the conjecture that
every aspect of learning or any other feature of intelligence
can in principle be so precisely described that a machine can
be made to simulate it. An attempt will be made to find how
to make machines use language, form abstractions and
concepts, solve kinds of problems now reserved for humans,
and improve themselves.” (McCarthy et al. 1955)

“We think that a significant advance can be made in one or
more of these problems if a carefully selected group of
scientists work on it together for a summer.”

6 / 53



AI to the Rescue: Where AI Meets Cryptography

Artificial Intelligence

Artificial Intelligence

AI is the new electricity. (Andrew Ng)

Computer vision.

Healthcare.

Speech recognition.

Natural Language Processing.

Robotics.

Security.

. . .
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Artificial Intelligence

Artificial Intelligence

Powerful hardware.

Big data.

Novel applications.
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Artificial Intelligence

AI is Becoming Better
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Artificial Intelligence

AI is Becoming More Expensive
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Artificial Intelligence

History

Communication between Norbert Wiener and Warren Weaver
(1947).
“A most serious problem, for UNESCO and for the
constructive and peaceful future of the planet, is the problem
of translation, as it unavoidably affects the communication
between peoples...”
“Also knowing nothing official about, but having guessed and
inferred considerable about, powerful new mechanized
methods in cryptography - methods which I believe succeed
even when one does not know what language has been coded
- one naturally wonders if the problem of translation could
conceivably be treated as a problem in cryptography. When I
look at an article in Russian, I say ”This is really written in
English, but it has been coded in some strange symbols. I will
now proceed to decode.””
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Artificial Intelligence

Learnability

A learning machine consists of a learning protocol together
with a deduction procedure. The former specifies the manner
in which information is obtained from the outside. The latter
is the mechanism by which a correct recognition algorithm for
the concept to be learned is deduced.

There is circumstantial evidence from cryptography, however,
that the whole class of functions computable by polynomial
size circuits is not learnable.

The existence of good cryptographic functions that are easy
to compute therefore implies that some easy-to-compute
functions are not learnable.

“A Theory of the Learnable” (Leslie Valiant, 1984).

12 / 53



AI to the Rescue: Where AI Meets Cryptography

Artificial Intelligence

Learnability

“Cryptography and Machine Learning” (Ronald Rivest, 1991).

“The techniques used demonstrate an interesting duality
between learning and cryptography.”

“Cryptographic limitations on learning Boolean formulae and
finite automata” (Michael Kearns, Leslie Valiant, 1994).
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Artificial Intelligence

AI and Security

Implementation attacks.

Hardware Trojans.

Modeling attacks on PUFs.

Design of cryptographic primitives.

Cryptanalysis.

Intrusion detection.

Malware and spam identification/detection.

Fuzzing.

Privacy-preserving machine learning.

Adversarial machine learning.

Steganography and steganalysis.

LLMs as covert channels.

. . .
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Artificial Intelligence

AI and Security

AI for security and security of AI (ML).

In AI for security, we can use AI either in the defense/design
or attack phase.

Attacks seems more explored since it is easier to validate that
the attack works.

In security of AI, we can use cryptographic techniques to
either attack AI systems or to improve their privacy/security.
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AI for Cryptography

Design of Boolean Functions

Heuristic Design of Cryptographically Strong Balanced
Boolean Functions

Eurocrypt 98.

Experiments for n = 8.

Genetic algorithm capable of generating highly nonlinear
balanced Boolean functions.

Hill climbing techniques are adapted to locate balanced,
highly nonlinear Boolean functions that also almost satisfy
correlation immunity.
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AI for Cryptography

Design of Boolean Functions

Search for Boolean Functions With Excellent Profiles in
the Rotation Symmetric Class

Modified steepest-descent-based iterative heuristic search.

Boolean functions on 9 variables having nonlinearity 241.

10 variable functions having first-order resiliency and
nonlinearity 492.
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AI for Cryptography

Physically Unclonable Functions

Physically Unclonable Functions

Physically Unclonable Functions (PUFs) are embedded or
standalone devices used as a means to generate either a
source of randomness or to obtain an instance-specific
uniqueness for secure identification.

This is achieved by relying on inherent uncontrollable
manufacturing process variations, which results in each chip
having a unique response.

No two PUFs will give the same response when supplied with
the same challenge.
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Physically Unclonable Functions

Physically Unclonable Functions

Two types of PUFs: strong and weak.

The difference concerning the number of challenge-response
pairs (CRPs) the attacker can obtain.

The number of unique challenges c scales polynomially with
the circuit area of a weak PUF.

The number of unique challenges c scales exponentially with
the circuit area of a strong PUF.
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AI for Cryptography

Physically Unclonable Functions

Physically Unclonable Functions

Weak PUF has a limited number (typically, one or few) of
responses to challenges.

Strong PUFs have a large number of responses (concerning
different challenges).

Strong PUFs have a virtually unlimited number of challenges
c , but their CRPs are highly correlated.

Given enough (often a small amount) of CRPs, it is possible
to build a predictive model of a strong PUF (in a way, we
build a mathematical clone since it is not feasible to make an
analog physical clone).

There exists no validated design of a strong PUF that is fully
resilient against modeling attacks.
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AI for Cryptography

Physically Unclonable Functions

Physically Unclonable Functions

Figure: An example of a strong PUF - Arbiter PUF with n stages.
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Physically Unclonable Functions

Physically Unclonable Functions

Several techniques are commonly used to break strong PUFs.

From ML domain, logistic regression, and from EC, evolution
strategy.

This domain is very interesting as AI provided results that
were not possible to obtain with any other technique.

What is more, even simple AI techniques can easily break
strong PUFs.

This also means there is not much development in the domain
as attacks are easy to do, so there is no clear benefit of using
more complex techniques, e.g., deep learning.
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AI for Cryptography

Side-channel Analysis

Cryptographic Theory vs. Physical Reality

Cryptographic algorithms are (supposed to be) theoretically
secure.

Implementations leak in the physical world.

Implementation attacks

Implementation attacks do not aim at the weaknesses of the
algorithm but at its implementation.
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AI for Cryptography

Side-channel Analysis

Relevance
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AI for Cryptography

Side-channel Analysis

Profiling Attacks

Profiling attacks have a prominent place as the most powerful
among side-channel attacks.

Within the profiling phase, the adversary estimates leakage
models for targeted intermediate computations, which are
then exploited to extract secret information in the actual
attack phase.

Some machine learning (ML) techniques also belong to the
profiling attacks.
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Side-channel Analysis

Profiling Attacks

Profiling attacks are more complicated than direct attacks.

The attacker must have a copy of the device to be attacked.
27 / 53



AI to the Rescue: Where AI Meets Cryptography

AI for Cryptography

Side-channel Analysis

State-of-the-art Results with DLSCA

Table: Points of interest, the minimum number of attack traces to get guessing
entropy equal to 1, model search success (when GE=1), and number of trainable
parameters for all datasets and feature selection scenarios.

Neural Feature Amount Attack Search Trainable
Dataset Network Selection of POIs Traces Success (%) Parameters

Model Scenario (HW/ID) (HW/ID) (HW/ID) (HW/ID)
ASCADf MLP RPOI 200/100 5/1 99.22%/96.86% 82 209/429 256
ASCADf CNN RPOI 400/200 5/1 99.23%/99.08% 499 533/158 108
ASCADf MLP OPOI 700/700 480/104 82.80%/68.80% 16 309/10 266
ASCADf CNN OPOI 700/700 744/87 55.53%/35.33% 594 305/62 396
ASCADf MLP NOPOI 2 500/2 500 7/1 74.50%/39.00% 2 203 009/5 379 256
ASCADf CNN NOPOI 10 000/10 000 7/ 1 15.40%/2.45% 545 693/439 348
ASCADf CNN NOPOI desync 10 000/10 000 532/36 2.44%/2.64% 268 433/64 002
ASCADr MLP RPOI 200/20 3/1 99.23%/100% 565 209/639 756
ASCADr CNN RPOI 400/30 5/1 100%/100% 575 369/636 224
ASCADr MLP OPOI 1 400/1 400 328/129 71.40%/37.25% 31 149/34 236
ASCADr CNN OPOI 1 400/1 400 538/78 47.92%/23.95% 270 953/87 632
ASCADr MLP NOPOI 25 000/25 000 6/ 1 44.39%/7.02% 5 243 209/12 628 756
ASCADr CNN NOPOI 25 000/25 000 7/ 1 19.17%/4.35% 369 109/721 012
ASCADr CNN NOPOI desync 25 000/25 000 305/73 0.71%/1.04% 22 889/90 368
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AI for Cryptography

Side-channel Analysis

ATM Data

Collected the environmental audio (exploiting the webcam
microphone) and the keylogs of the PIN pad through the USB
interface during the experiment.

Figure: Our experimental setup.
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Side-channel Analysis

Results

(a) True
digit = 7
Pred = 7
(0.999), 4
(0.000), 8
(0.000)

(b) True
digit = 3
Pred = 3
(0.979), 2
(0.012), 6
(0.005)

(c) True
digit = 6
Pred = 6
(0.819), 9
(0.170), 8
(0.009)

(d) True
digit = 3
Pred = 3
(0.809), 2
(0.092), 5
(0.069)

(e) True
digit = 3
Pred = 2
(0.329), 3
(0.315), 6
(0.185)

Figure: PIN 73633 entered by a user in our test set in the Single PIN pad scenario.
Our algorithm suggests 73632 as the most probable PIN (probability = 21.32%),
73633 as the second most probable PIN (probability = 20.43%), and 73636 as the
third most probable PIN (probability = 11.96%). The algorithm predicts the correct
PIN in the second attempt.
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AI for Cryptography

Fault Injection

Fault Injection

A fault injection (FI) attack is successful if, after exposing the
device to a specially crafted external interference, it shows an
unexpected behavior exploitable by the attacker.

FI can be divided into the characterization phase (finding
faults) and using those faults for a successful attack.

Insertion of signals has to be precisely tuned for the fault
injection to succeed.

Finding the correct parameters for a successful FI can be
considered a search problem where one aims to find, within a
minimum time, the parameter configurations that result in a
successful fault injection.
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Fault Injection

Fault Injection

Depending on the source of the fault, the search space of
possible parameters changes significantly.

Generally, the search space is too big to conduct an
exhaustive search.

Commonly, one defines several possible classes for classifying a
single measurement:

1 NORMAL: smart card behaves as expected, and the glitch is
ignored

2 RESET: smart card resets as a result of the glitch
3 CHANGING: the response is changing when repeating

measurements.
4 SUCCESS: smart card response is a specific, predetermined

value that does not happen under normal operation
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Fault Injection

Fault Injection

Figure: A depiction of search space for voltage glitching and two parameters.
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Fault Injection

Fault Injection

Figure: Deep learning prediction.
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AI for Cryptography

Machine Learning-based Cryptanalysis

Traditional Cryptanalysis

Aims at recovering the secret key by using a knowledge of
(P,C ) pairs.

Looking for patterns to distinguish encrypted data from
random.

Adversary’s goal is to distinguish the output of a cipher from
random data faster than brute force key search.

Two common key-recovery attacks:

1 differential cryptanalysis: exploits difference propagation
2 linear cryptanalysis: exploits large P − to − C correlations
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AI for Cryptography

Machine Learning-based Cryptanalysis

Differential Cryptanalysis

Invented by Biham and Shamir in 1990 as a way to attack
DES.

Exploits a scenario where a particular ∆C occurs given a
particular input difference ∆P with a “high” probability.

It is a chosen plaintext attack, so the attacker will select pairs
of inputs, P and P

′
, to satisfy a particular ∆P.
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AI for Cryptography

Machine Learning-based Cryptanalysis

Neural-aided Cryptanalysis

Started by Gohr in 2019.

Trained neural distinguishers of depth-10 and depth-1 for
round-reduced versions of Speck32/64.

The approach proved successful on 5-8 rounds (accuracy
above 50%).

Improved 11-round key recovery attack complexity on
Speck32/64 (using Bayesian optimization).

Up to now, used on more than 20 different cryptographic
algorithms.
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Machine Learning-based Cryptanalysis

Neural-aided Cryptanalysis
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Machine Learning-based Cryptanalysis

Machine Learning Attack on LWE-based Cryptographic
Schemes

Lattice-based cryptosystems, based on a hard problem known
as Learning With Errors (LWE), have emerged as strong
contenders for PQC standardization.

The idea is to train transformers to perform modular
arithmetic and combine half-trained models with statistical
cryptanalysis techniques.

The attack can recover secrets for small-to-mid size LWE
instances with sparse binary secrets.
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Cryptography for AI

Attacks on Machine Learning
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Poisoning Attacks

Poisoning Attacks

The goal of the attacker is to contaminate the machine model
generated in the training phase so that predictions on new
data will be modified in the testing phase.

In targeted poisoning attacks, the attacker wants to
misclassify specific examples.

In non-targeted attacks, the attacker aims to degrade the
model’s performance (DoS attack).
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Cryptography for AI

Poisoning Attacks

Model Backdoors

Backdoors are a particular type of poisoning attack, also
named Trojans.

Backdoor attacks aim to make a model misclassify some of its
inputs to a preset-specific label while other classification
results behave normally.

This misclassification is activated when a specific pattern is
added to the model input.

This pattern is called the trigger and can be anything the
targeted model understands.
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Poisoning Attacks

Model Backdoors

Goldwasser et al. show how to plant an undetectable backdoor
into a classifier that, without an appropriate “backdoor key”,
cannot be detected by any computationally-bounded observer.

First construction shows how to plant a backdoor in any
classifier, leveraging the cryptographic notion of digital
signatures.

Assuming the existence of one-way functions, for every
training procedure Train, there exists a model backdoor
(Backdoor, Activate), which is non-replicable and black-box
undetectable.

“Planting Undetectable Backdoors in Machine Learning
Models” (Goldwasser et al., 2024).

44 / 53



AI to the Rescue: Where AI Meets Cryptography

Cryptography for AI

Model Stealing

Model Stealing

Model stealing attacks try to mimic or fully copy a target
model.

Leveraging oracle access to a model f , the attack tries to
reconstruct it with oracle access x : f (x) ≃ f̂ (x).

The model f̂ acquired by approximation relies on creating a
model that, by iterative adjustments, performs similarly
(same) to the original model.

However, it is not architecturally the same.

45 / 53



AI to the Rescue: Where AI Meets Cryptography

Cryptography for AI

Cryptanalytic Extraction of Neural Network Models

Cryptanalytic Extraction of Neural Network Models

The machine learning problem of model extraction is a
cryptanalytic problem in disguise.

Given oracle access to a neural network, one can mount a
differential attack that can efficiently steal the parameters of
the remote model up to floating point precision.

The attack relies on the fact that ReLU neural networks are
piecewise linear functions, and thus queries at the critical
points reveal information about the model parameters.
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Cryptanalytic Extraction of Neural Network Models

Performing a model extraction attack-learning the weights θ
given oracle access to the function fθ - is a similar problem to
performing a chosen-plaintext attack on a nontraditional
“encryption” algorithm.

A differential attack that is effective at performing
functionally-equivalent neural network model extraction
attacks.

The attack traces the neural network’s evaluation on pairs of
examples that differ in a few entries and uses this to recover
the layers (analogous to the rounds of a block cipher) of a
neural network one by one.

All the weights and biases of black-box ReLU-based DNNs
could be inferred using a polynomial number of queries and
computational time.
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Cryptanalytic Extraction of Neural Network Models

Reverse Engineering of Neural Networks with SCA

(a) The complete measurement setup
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Cryptanalytic Extraction of Neural Network Models

Reverse Engineering the Number of Neurons and Layers

Figure: Methodology to reverse engineer the target neural network
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Cryptanalytic Extraction of Neural Network Models

ARM Cortex M-3 and MLP

Tests with MNIST and DPAv4 datasets.

DPAv4: the original accuracy equals 60.9%, and the accuracy
of the reverse-engineered network is 60.87%.

MNIST: the accuracy of the original network is equal to
98.16%, and the accuracy of the reverse-engineered network
equals 98.15%, with an average weight error converging to
0.0025.
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Conclusions

AI has a prominent role in cryptography (and even more
security).

Current results are promising but we need more relevant
problems.

Cryptography also becomes more important for AI but we
need more practical settings.

In any way, it is good to see that AI is becoming more
accepted in the crypto community.
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Questions?

Thank you for your attention!

I am happy to answer your questions.

stjepan.picek@ru.nl
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