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‘— Introduction

Introduction

m Side-channel attacks (SCAs) represent a powerful attack
category on crypto devices.

m We commonly divide SCAs into direct and profiling attacks.

m Deep Learning-based SCA (DLSCA) represents the most
powerful category of profiling SCAs.

m Their main advantage is that they require little
pre-processing/feature engineering effort and can break
protected targets with a small number of attack traces.

m But, the situation is not so simple.
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‘— Introduction

Introduction

m While DLSCA can break protected targets (mostly considered
Boolean masking and desynchronization), it does not mean
the attack is not more difficult.

m As such, any improvement in reducing the difficulty of
attacking the target is important.

m One countermeasure (or environmental effect) that did not
receive much attention is the Gaussian noise.
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‘— Introduction

Motivation

m Can we reduce the effect of Gaussian noise (improve SNR)?
m A traditional approach would be to add more measurements.

m A deep learning approach may be to use a denoising
autoencoder.

m But there are limitations - these approaches generally require
considerable expertise to be effectively employed or
necessitate the ability of the attacker to capture a 'clean’ set
of traces without the noise.
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Goal

m We propose a novel approach to denoise traces based on
Denoising Diffusion Probabilistic Models (DDPMs).

m Using these models, we can effectively remove environmental
(Gaussian) noise from side-channel traces without requiring a
reference set of 'clean’ traces or profiling labels.

m We experimentally validate our approach against several
datasets and show improved attack performance for
non-profiled collision attacks, non-profiled attacks using deep
learning, higher order correlation power analysis (HO-CPA),
and horizontal attacks.
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Generative vs. Discriminative

m Machine learning algorithms can be divided into two
categories: generative and discriminative.

m The goal for discriminative algorithms is to simulate the
conditional probability distribution of the output labels given
the input features and understand the decision boundary.

m Generative algorithms are designed to simulate the joint
probability distribution of the input features (possibly
conditioned on labels).

m To create new samples, their goal is to learn the underlying
data distribution.

m Template attack is generative!
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‘—Background

Algorithmic Noise vs. Measurement Noise

m We consider algorithmic noise to be the parts of the
computation that are happening in parallel with the
intermediate values we target.

m Measurement noise is the part of the trace that is due to
taking the physical measurements.

m We generally assume this noise follows or is similar to, a
Gaussian distribution.

m The main difference between these types of noise for the
purposes of unsupervised pre-processing of side-channel traces
is that the algorithmic noise is part of the signal and is,
therefore, not removed.
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Denoising Diffusion Probabilistic Models (DDPMs)

m DDPM training is based on a relatively straightforward
paradigm: during training, we iteratively add some noise to an
image (or some other type of data) for T steps; this is
referred to as the forward process.

m Then, for an image x; where noise has been added t times, we
train the model to predict x;_1 and thereby remove noise.

m This is called the backward process.

m The central idea here is that when we start from fully random
noise and iteratively remove noise, we can generate
realistic-looking images as the diffusion models try to
"amplify’ patterns in the noise.
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— Background

Denoising Diffusion Probabilistic Models (DDPMs)
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Figure: Diagram illustrating the forward and backward process for training DDPMs.
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‘—Methodology

Approach

m The key idea here is to take a diffusion model parameterized
with 8, fy : X™ x T — X™, where X is a side-channel trace
with m samples and T = Z,, that we train using standard
diffusion model training on our measured traces.

m After training, we then input actual traces (or xp) and try to
remove noise (or predict x_1) from these traces.

m This then results in every original trace being transformed into
a denoised version.
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‘—Methodology

Approach

m To keep the focus of this work on the viability of DDPMs for
denoising traces in an unsupervised context, we only use
synchronized traces.

m This allows us to restrict our architecture to shallow MLPs as
these have been shown to be effective for processing
synchronized side-channel traces.
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Figure: General model architecture for the input of size X.
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‘—Experimental Results

Proof-of-concept

m We consider the ASCADV2 target where the leakage of the
masked output is noisy (SNR around 0.08) and the ESHARD
target provides measurements of a software implementation
where both the mask and masked Sbox output leak with
relatively low SNRs.
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Figure: SNR values for secret shares for ASCADv2(left) and ESHARD(right).
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Experimental Results

Proof-of-concept

m The results suggest that diffusion models learn to differentiate
the side-channel signal from noise by looking for correlated
features in the trace.

m By finding and combining information from those related
points, the model can decrease the error in its output.

m This is relevant for real-world side-channel traces when we
take several measurements during an operation that leaks
some sensitive value, e.g., the oscilloscope has a high
sampling rate or some sensitive value is manipulated in several
trace points.
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‘—Experimental Results

Multi Output Regression Enhanced (MORE)

m The basic idea of this attack is to train one model labeled for
every possible key and conduct the regression task.

m As the labels generated using the correct key are the only ones
that are related to the trace, the model should then most
accurately predict labels of the correct key.
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Figure: MORE results for ESHARD.
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‘—Experimental Results

Collision Attack against ASCADv2

m Collision attacks aim to recover the bitwise difference between
sub-keys (key-deltas).

m These key-deltas can then be used to brute-force one key
byte, leading to full key recovery (given correct key-deltas).
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Figure: ASCADV2 collision attacks for Original (top) and Diffused (bottom) traces.
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‘—Experimental Results

Horizontal Attacks against Public Key Implementation

m The horizontal attack that targets individual bits of the ECC
key by classifying trace segments.

m In this attack, initial labeling that is only slightly better than
random guessing (around 52%) is iteratively improved upon

using CNNs.
‘ One neuron| CNN ONN + Random CNN Random CNN -+
Dropout Dropout
Original|| 70.9/79.2% 63.6/73.7%|55.2/75.7%| 71.7/80.0% 98.6/99.6%
Diffused|| 96.3/99.2% | 70.8/87.1%|50.1/83.5%| 62.6/81.1% 99.6/100%

Figure: Comparison of Average/Max single trace accuracy for key bits using the one
neuron perceptron and CNN setups.
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‘—Experimental Results

Correlation Power Analysis
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Figure: CPA results for ESHARD(left) and ASCAD(right). Diffused 5k/10k refers to
denoising with DDPMs trained with 5000 or 10000 traces, respectively.
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Experimental Results

Conclusions

m Our results showcase that DDPM models can learn useful
representations of side-channel traces in unsupervised
contexts.

m To remove noise from a leaky sample point, the network needs
more information about the leaking value.

m To accomplish this, it can find features that leak the same
value and combine the information from these features to
arrive at a less noisy version of the feature.

m In effect, we compress the information from several leaky
samples into a singular sample.
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‘—Experimental Results

Limitations

m While our results show significant gains for the showcased
attacks against some targets, it is clear that these benefits are
not universal.

m Our method does not improve the SNR for datasets that
contain mostly algorithmic noise.
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‘—Experimental Results

Questions?

Thank you for your attention!

| am happy to answer your questions.

stjepan.picek@ru.nl
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