Bounded CCA2-secure Proxy Re-encryption from Lattices

Shingo Sato, Junji Shikata

Yokohama National University

August 15, 2025

Overview of Our Result

Background and Our Goal

Propose a bounded CCA2-secure post-quantum proxy re-encryption (PRE).

- PRE: Public key encryption that converts ciphertexts under a public key into ciphertexts under another public key.
- No existing CCA2-secure post-quantum PRE.

Overview of our Result

- Introduce the notion of bounded CCA2 security for PRE;
- Propose a generic construction of bounded CCA2-secure PRE starting from CPA-secure PRE with an additional property;
- Propose a lattice-based PRE with required security.

Proxy Re-encryption (PRE)

- Public key cryptosystem that allows a proxy to convert ciphertexts under pk_A into ciphertexts under pk_B.
- Applications: e-mail forwarding, encrypted data storage, etc.

Classification of PRE

Focus on single-hop unidirectional PRE.

Unidirectional vs. Bidirectional

- Unidirectional: $\mathsf{rk}_{A \to B} \leftarrow \mathsf{ReKeyGen}(\mathsf{sk}_A, \mathsf{pk}_B)$ allows only re-encryption from pk_A into pk_B .
- Bidirectional: $\mathsf{rk}_{A \to B} \leftarrow \mathsf{ReKeyGen}(\mathsf{sk}_A, \mathsf{sk}_B)$ also allows re-encryption from pk_B into pk_A .

Single-hop vs. Multi-hop

- Single-hop: ct_B cannot be re-encrypted to other ciphertexts.
- Multi-hop: ct_B can be re-encrypted into ciphertexts under another public key.

Here, $\operatorname{ct}_B \leftarrow \operatorname{ReEnc}(\operatorname{rk}_{A \to B}, \operatorname{Enc}(\operatorname{pk}_A, \operatorname{m}))$.

Existing Post-Quantum PRE Schemes

There is no CCA2-secure post-quantum PRE scheme.

Scheme	Security	Assumption	Dir.	# of Hops
[CCL ⁺ 14]	CPA	LWE	Uni	Multi
[PRSV17]	CPA	Ring-LWE	Uni	Multi
[FKKP19]	(adaptive) HRA	LWE	Uni	Multi
[FL19]	CCA1	LWE	Uni	Multi
[ZLHZ23]	CPA	LWE	Uni	Single
[ZJZ24]	HRA	LWE	Uni	Multi
[WWXW25]	(adaptive) HRA	LWE	Uni	(unbounded) Multi

- CPA and CCA1 are strictly weaker than CCA2.
- The relationship between CCA2 and HRA is unknown:
 - HRA is strictly stronger than CPA.
 - ▶ But, the adversary is not given any access to the decryption oracle.

Bounded CCA2 Security for Public Key Encryption

- A weak variant of CCA2 security for public key encryption (PKE)
- The number of decryption queries is at most a-priori parameter $t_d = O(1)$ (called a collusion parameter).

Generic constructions from CPA-secure PKE have been proposed so far. There are several practical applications.

Our Contribution

Goal

Propose a bounded CCA2-secure post-quantum PRE with compact ciphertexts.

- Bounded CCA2 security: provides a sufficiently wide range of applications.
- Compact ciphertexts: ciphertext-size does not depend on collusion parameters, linearly.

Contribution

- Formalize the notion of bounded CCA2 security for PRE;
- Propose a generic construction of bounded CCA2-secure PRE with compact ciphertexts starting from CPA-secure PRE with our introduced property;
- Propose a lattice-based PRE with required properties;

Definition of PRE

Definition (Syntax of PRE (informal))

- KeyGen $(1^{\lambda}) \rightarrow (\mathsf{pk}, \mathsf{sk});$
- Enc(pk, m) → ct;
- Dec(sk, ct) \rightarrow m/ \perp ;
- ReKeyGen(sk_A , pk_B) \to $\operatorname{rk}_{A \to B}$;
- ReEnc($\mathsf{rk}_{A \to B}, \mathsf{ct}_A$) $\to \mathsf{ct}_B$.

pk, pk_A, pk_B: public keys; sk, sk_A, sk_B: secret keys; m: message; ct: ciphertext; \perp : rejection symbol; rk_{A \rightarrow B}: a re-encryption key.

Re-encryption correctness

$$\mathsf{Dec}(\mathsf{sk}_B, \mathsf{ReEnc}(\mathsf{rk}_{A \to B}, \mathsf{ct}_A)) = \mathsf{m}$$

holds for all $\operatorname{ct}_A \leftarrow \operatorname{Enc}(\operatorname{pk}_A, \operatorname{m})$ and $\operatorname{rk}_{A \to B} \leftarrow \operatorname{ReKeyGen}(\operatorname{sk}_A, \operatorname{pk}_B)$.

Bounded CCA2 Security for PRE

• The numbers of decryption queries and re-encryption queries are at most a-priori parameters $t_d = O(1)$ and $t_r = O(1)$, respectively.

The CCA2 security in the game above is called (t_d, t_r) -CCA2 security.

Building Blocks of Our Basic PRE

Building blocks

- CPA-secure PRE PRE_{CPA};
- Strongly unforgeable one-time signatures OTS;
- Cover-free families (CFFs)

Definition $((\bar{n}, u, t)$ -CFF)

 \exists a function $\phi: \{1, \dots, \bar{n}\}$ (an identity space) \to (a subset of $\{1, \dots, u\}$) (where $u \ll \bar{n}$) s.t.

$$\phi(\mathsf{id}^*) \notin \phi(\mathsf{id}^{(1)}) \cup \ldots \cup \phi(\mathsf{id}^{(t)})$$

for all

- ullet id $^{(1)},\ldots,$ id $^{(t)}\in\{1,\ldots,ar{n}\}$ and
- $id^* \notin \{1, ..., \bar{n}\} \setminus \{id^{(1)}, ..., id^{(t)}\}.$

Basic Generic Construction from CPA-secure PRE (1/2)

We consider the following trivial construction which is based on the existing bounded CCA2-secure PKE [CHH $^+$ 07]:

```
• \mathsf{pk} = (\mathsf{PRE}_{\mathsf{CPA}}.\mathsf{pk}_1, \dots, \mathsf{PRE}_{\mathsf{CPA}}.\mathsf{pk}_u);

• \mathsf{sk} = (\mathsf{PRE}_{\mathsf{CPA}}.\mathsf{sk}_1, \dots, \mathsf{PRE}_{\mathsf{CPA}}.\mathsf{sk}_u);

• \mathsf{ct} = (\mathsf{OTS}.\mathsf{vk}, \mathsf{ct}_{\mathsf{vk}}, \mathsf{OTS}.\sigma):

• (\mathsf{OTS}.\mathsf{vk}, \mathsf{OTS}.\mathsf{sigk}) \leftarrow \mathsf{OTS}.\mathsf{KeyGen};

• \mathsf{ct}_{\mathsf{vk}} = (\mathsf{PRE}_{\mathsf{CPA}}.\mathsf{ct}_1, \dots, \mathsf{PRE}_{\mathsf{CPA}}.\mathsf{ct}_v): \mathsf{Enc}, \mathsf{associated} \mathsf{with} \mathsf{OTS}.\mathsf{vk}.

• \phi(\mathsf{OTS}.\mathsf{vk}) := \{\tau_1, \dots, \tau_v\} \subseteq \{1, \dots, u\};

• \mathsf{Sample} \mathsf{random} \mathsf{values} (x_1, \dots, x_v) \mathsf{s.t.} \ x_1 \oplus \dots \oplus x_v = \mathsf{m};

• \forall i \in \{1, \dots, v\}, \mathsf{PRE}_{\mathsf{CPA}}.\mathsf{ct}_i \leftarrow \mathsf{PRE}_{\mathsf{CPA}}.\mathsf{Enc}(\mathsf{PRE}_{\mathsf{CPA}}.\mathsf{pk}_{\tau_i}, x_i);

• \mathsf{OTS}.\sigma \leftarrow \mathsf{OTS}.\mathsf{Sign}(\mathsf{OTS}.\mathsf{sigk}, \mathsf{ct}_{\mathsf{vk}});
```

Basic Generic Construction from CPA-secure PRE (2/2)

Re-encryption key generation (ReKeyGen)

```
• \mathsf{rk}_{A \to B} = (\mathsf{rk}_{i \to j})_{i,j \in \{1,\dots,u\}}:

• \mathsf{rk}_{i \to j} \leftarrow \mathsf{PRE}_{\mathsf{CPA}}.\mathsf{ReKeyGen}(\mathsf{PRE}_{\mathsf{CPA}}.\mathsf{sk}_{A,i}, \mathsf{PRE}_{\mathsf{CPA}}.\mathsf{pk}_{B,j}).

for \mathsf{sk}_A = (\mathsf{PRE}_{\mathsf{CPA}}.\mathsf{sk}_{A,1},\dots,\mathsf{PRE}_{\mathsf{CPA}}.\mathsf{sk}_{A,u}) and \mathsf{pk}_B = (\mathsf{PRE}_{\mathsf{CPA}}.\mathsf{pk}_{B,1},\dots,\mathsf{PRE}_{\mathsf{CPA}}.\mathsf{pk}_{B,u}).
```

Re-encryption (ReEnc):

```
\operatorname{ct}_A = (\operatorname{OTS.vk}_A, \operatorname{ct}_{\operatorname{vk}_A}, \operatorname{OTS}.\sigma_A) \Rightarrow \operatorname{ct}_B = (\operatorname{OTS.vk}_B, \operatorname{ct}_{\operatorname{vk}_B}, \operatorname{OTS}.\sigma_B)
```

- $ct_{vk_B} = (PRE_{CPA}.ct_{B,1}, \dots, PRE_{CPA}.ct_{B,v})$:

 - $\forall i \in \{1, \dots, v\}, \\ \mathsf{PRE}_{\mathsf{CPA}}.\mathsf{ct}_{B,i} \leftarrow \mathsf{PRE}_{\mathsf{CPA}}.\mathsf{ReEnc}(\mathsf{rk}_{\alpha_i \to \beta_i}, \mathsf{PRE}_{\mathsf{CPA}}.\mathsf{ct}_{A,i}).$

Requirement to satisfy Compact Ciphertexts (1/2)

Purpose

For a ciphertext $ct = (OTS.vk, ct_{vk}, OTS.\sigma)$, compress $ct_{vk} = (PRE_{CPA}.ct_1, \dots, PRE_{CPA}.ct_{\nu})$ into a single ciphertext.

We consider the following compression:

$$\begin{split} \mathsf{pk}_{\mathsf{vk}} \leftarrow & \sum_{i \in \{1, \dots, v\}} \mathsf{PRE}_{\mathsf{CPA}}.\mathsf{pk}_{\tau_i}; \\ \mathsf{ct}_{\mathsf{vk}} \leftarrow & \mathsf{PRE}_{\mathsf{CPA}}.\mathsf{Enc}(\mathsf{pk}_{\mathsf{vk}}, \mathsf{m}). \end{split}$$

The first attempt

Require for PRE_{CPA} to satisfy public-to-secret key homomorphism [TW14]:

$$Dec(sk_{vk}, ct_{vk}) = m$$

holds for
$$\mathsf{sk}_{\mathsf{vk}} = \sum_{i \in \{1, \dots, v\}} \mathsf{PRE}_{\mathsf{CPA}}.\mathsf{sk}_{\tau_i}.$$

Requirement to satisfy Compact Ciphertexts (2/2)

The algorithm Dec works for original ciphertexts in the same way as the bounded CCA2-secure PKE [TW14].

However, such homomorphism is not enough for generating or decrypting re-encrypted ciphertexts.

- Consider re-encrypting a ciphertext $\operatorname{ct}_A = (\mathsf{OTS.vk}_A, \operatorname{ct}_{\mathsf{vk}_A}, \mathsf{OTS}.\sigma_A)$ by using re-encryption keys $\operatorname{rk}_{\alpha_i \to \beta_i}$.
- But $ct_{vk_A} \leftarrow PRE_{CPA}.Enc(pk_{vk_A}, m)$ is compressed into a single ciphertext.
 - \Rightarrow Cannot run PRE_{CPA}.ReEnc($\mathsf{rk}_{\alpha_i \to \beta_i}$, PRE_{CPA}.ct_{A,i}).

Key-homomorphism for PRE

We introduce a new notion of PRE so that we can compute compact re-encrypted ciphertexts.

Re-encryption key homomorphism (informal)

$$\begin{split} \mathsf{rk}_{\mathsf{vk}_A \to \mathsf{vk}_B} &= \sum_{i \in \{1, \dots, v\}} \mathsf{rk}_{\alpha_i \to \beta_i}; \ \mathsf{and} \\ \mathsf{Dec}(\mathsf{sk}_{\mathsf{vk}_B}, \mathsf{ReEnc}(\mathsf{rk}_{\mathsf{vk}_A \to \mathsf{vk}_B}, \mathsf{ct}_{\mathsf{vk}_A})) &= \mathsf{m} \end{split}$$

hold for

- $ct_{vk_A} \leftarrow PRE_{CPA}.Enc(pk_{vk_A}, m);$
- $\mathsf{pk}_{\mathsf{vk}_A} \leftarrow \sum_{i \in \{1, \dots, v\}} \mathsf{PRE}_{\mathsf{CPA}}.\mathsf{pk}_{\alpha_i};$
- $\mathsf{sk}_{\mathsf{vk}_B} \leftarrow \sum_{i \in \{1, \dots, v\}} \mathsf{PRE}_{\mathsf{CPA}}.\mathsf{sk}_{\beta_i}.$

Our Generic Construction with Compact Ciphertexts (1/2)

```
• pk = (PRE_{CPA}.pk_1, ..., PRE_{CPA}.pk_u);

• sk = (PRE_{CPA}.sk_1, ..., PRE_{CPA}.sk_u);

• ct = (OTS.vk, ct_{vk}, OTS.\sigma):

• (OTS.vk, OTS.sigk) \leftarrow OTS.KeyGen;

• (OTS.vk, OTS.sigk) \leftarrow OTS.KeyGen;

• (OTS.vk) := \{\tau_1, ..., \tau_v\};

• pk_{vk} \leftarrow \sum_{i \in \{1, ..., v\}} PRE_{CPA}.pk_{\tau_i}.

• ct_{vk} \leftarrow PRE.Enc(pk_{vk}, m);

• OTS.\sigma \leftarrow OTS.Sign(OTS.sigk, ct_{vk});
```

Re-encryption key generation

- - rk_{i→j} ← PRE_{CPA}.ReKeyGen(PRE_{CPA}.sk_{A,i}, PRE_{CPA}.sk_{B,j}).

Our Generic Construction with Compact Ciphertexts (2/2)

Re-encryption:

$$\mathsf{ct}_A = (\mathsf{OTS.vk}_A, \mathsf{ct}_{\mathsf{vk}_A}, \mathsf{OTS}.\sigma_A) \Rightarrow \mathsf{ct}_B = (\mathsf{OTS.vk}_B, \mathsf{ct}_{\mathsf{vk}_B}, \mathsf{OTS}.\sigma_B)$$

- **2** Generation of ct_{vk_B} :

 - 2 $\mathsf{rk}_{\mathsf{vk}_A \to \mathsf{vk}_B} \leftarrow \sum_{i \in \{1, \dots, v\}} \mathsf{rk}_{\alpha_i \to \beta_i};$
 - 3 $ct_{vk_B} \leftarrow PRE_{CPA}.ReEnc(rk_{vk_A \rightarrow vk_B}, ct_{vk_A});$
- **③** OTS. σ_B ← OTS.Sign(OTS.sigk_B, PRE_{CPA}.ct_{vk_B}).

Theorem (Security of the proposed PRE)

Assume that

- PRE_{CPA} is CPA secure and re-encryption key homomorphic;
- OTS is strongly unforgeable; and
- ϕ is (\bar{n}, u, t) -CFF.

Then the proposed PRE scheme is (t, t)-CCA2-secure.

Lattice-based PRE with CPA Security and Re-encryption Key homomorphism

- KeyGen, Enc and Dec of our PRE scheme L-PRE are the same as those of ML-KEM.K-PKE (except for using compression functions).
- ReKeyGen and ReEnc are constructed so that L-PRE is re-encryption key homomorphic.

Theorem (Security of L-PRE)

- L-PRE is CPA secure under the module-LWE assumption, and re-encryption key homomorphic.
- In particular, assuming the adversary ${\cal A}$ against L-PRE, there exists a reduction algorithm ${\cal B}$ against module-LWE such that

$$\mathsf{Adv}^{\mathsf{ind-cpa}}_{\mathsf{L-PRE},\mathcal{A},n}(\lambda) \leq O(n_h \cdot q_{rk}) \cdot \mathsf{Adv}^{\mathsf{mlwe}}_{\mathcal{B}}(\lambda),$$

where n_h is the number of honest users and q_{rk} is the number of re-encryption key queries.

Conclusion

- Proposed a generic construction of bounded CCA2-secure PRE with compact ciphertexts:
 - Introduced the notion of bounded CCA2 security for PRE;
 - Proposed a generic construction from CPA-secure PRE with our introduced key-homomorphism, and OTS;
- Presented lattice-based PRE with required properties;
- As a result, we can obtain a bounded CCA2-secure post-quantum PRE with compact ciphertexts by using
 - our proposed lattice-based PRE; and
 - ▶ a lattice-based OTS scheme [LM08, LM18].

Conclusion

- Proposed a generic construction of bounded CCA2-secure PRE with compact ciphertexts:
 - Introduced the notion of bounded CCA2 security for PRE;
 - Proposed a generic construction from CPA-secure PRE with our introduced key-homomorphism, and OTS;
- Presented lattice-based PRE with required properties;
- As a result, we can obtain a bounded CCA2-secure post-quantum PRE with compact ciphertexts by using
 - our proposed lattice-based PRE; and
 - ▶ a lattice-based OTS scheme [LM08, LM18].

Thank you!

References I

- [CCL+14] Nishanth Chandran, Melissa Chase, Feng-Hao Liu, Ryo Nishimaki, and Keita Xagawa, Re-encryption, functional re-encryption, and multi-hop re-encryption: A framework for achieving obfuscation-based security and instantiations from lattices, Public Key Cryptography, LNCS, vol. 8383, Springer, 2014, pp. 95–112.
- [CHH+07] Ronald Cramer, Goichiro Hanaoka, Dennis Hofheinz, Hideki Imai, Eike Kiltz, Rafael Pass, Abhi Shelat, and Vinod Vaikuntanathan, Bounded cca2-secure encryption, ASIACRYPT, LNCS, vol. 4833, Springer, 2007, pp. 502–518.
- [FKKP19] Georg Fuchsbauer, Chethan Kamath, Karen Klein, and Krzysztof Pietrzak, Adaptively secure proxy re-encryption, Public Key Cryptography (2), LNCS, vol. 11443, Springer, 2019, pp. 317–346.
- [FL19] Xiong Fan and Feng-Hao Liu, *Proxy re-encryption and re-signatures from lattices*, ACNS, LNCS, vol. 11464, Springer, 2019, pp. 363–382.
- [LM08] Vadim Lyubashevsky and Daniele Micciancio, Asymptotically efficient lattice-based digital signatures, TCC, LNCS, vol. 4948, Springer, 2008, pp. 37–54.
- [LM18] ______, Asymptotically efficient lattice-based digital signatures, J. Cryptol. 31 (2018), no. 3, 774–797.
- [PRSV17] Yuriy Polyakov, Kurt Rohloff, Gyana Sahu, and Vinod Vaikuntanathan, Fast proxy re-encryption for publish/subscribe systems, ACM Trans. Priv. Secur. 20 (2017), no. 4, 14:1–14:31.

References II

- [TW14] Stefano Tessaro and David A. Wilson, Bounded-collusion identity-based encryption from semantically-secure public-key encryption: Generic constructions with short ciphertexts, Public Key Cryptography, LNCS, vol. 8383, Springer, 2014, pp. 257–274.
- [WWXW25] Xiaohan Wan, Yang Wang, Haiyang Xue, and Mingqiang Wang, Unbounded multi-hop proxy re-encryption with HRA security: An Iwe-based optimization, ACISP (2), LNCS, vol. 15659, Springer, 2025, pp. 124–144.
- [ZJZ24] Biming Zhou, Haodong Jiang, and Yunlei Zhao, Cpa-secure kems are also sufficient for post-quantum TLS 1.3, ASIACRYPT (3), LNCS, vol. 15486, Springer, 2024, pp. 433–464.
- [ZLHZ23] Yunxiao Zhou, Shengli Liu, Shuai Han, and Haibin Zhang, Fine-grained proxy re-encryption: Definitions and constructions from LWE, ASIACRYPT (6), LNCS, vol. 14443, Springer, 2023, pp. 199–231.