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* Boolean functions are simply maps f : F§ — Fo.
* They are crucial in symmetric cryptography.
 For instance, in the context of stream ciphers, they can be used as
filter functions (depending on many variables).
* In that context, their cryptographic strength is linked to properties
like:
— algebraic degree;
— algebraic immunity;
— balancedness;
— nonlinearity.
* For applications in Hybrid Homomorphic Encryption (HHE), the
filter function should further be easy to evaluate.
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The HWBF & our contribution

* The Hidden Weight Bit Function (HWBF) has been introduced
in [Bry91].
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The HWBF & our contribution

» The Hidden Weight Bit Function (HWBF) has been introduced
in [Bry9l].

* It is easy to evaluate (homomorphically) and has good crypto-
graphic properties, except for its nonlinearity [WCST14].

* Various works have tried to alter the function to enhance its nonlin-
earity while preserving the other properties [Car22, CS24, MO24].

* We follow a similar route and propose an excellent candidate for a
new filter function in the context of HHE.

In particular, our function has high nonlinearity, and we prove this
with tools from complex analysis.
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Introducing the Revisited HWBF

The HWBF is the function h : F§ — Fy defined by:

h(a:) = le : ]le(a:):i-
i=1
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Introducing the Revisited HWBF

The HWBF is the function h : F§ — Fy defined by:
h(m) = le : ]le(a:):i-
i=1

The Revisited HWBF is the function h : Fj — Fy defined by:

n/2
h(zx) = h(z) + Z(n + 1)@iq /2
i=1
Therefore h = h+ d o 7 + ¢, where:
* d:F} — Fy is defined by d(x) == Z?:/? Toj_1 * Toj;
» 7 :F§ — I} permutes the indices;

* g:F} — Iy is a sum of linear terms.
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Algebraic degree & algebraic immunity

The Revisited HWBF satisfies:

* deg(h) =deg(h)=n—1ifn >4
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Algebraic degree & algebraic immunity

The Revisited HWBF satisfies:

« deg(h) = deg(h) =n —1if n > 4;

. Al(R) > Al(h) — 2.

What about balancedness and nonlinearity?
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Walsh transform

The Walsh transform of weight k € [0,n] of a function f : Fy — Fy at
a € [y is defined by:

Wryi(a) = Z (—1)]0(93)4-(0,,@).

wy(x)=k
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Walsh transform

The Walsh transform of weight k € [0,n] of a function f : Fy — Fy at
a € [y is defined by:

Wryi(a) = Z (—1)]0(93)4-(0,,@).

wy(x)=k

The unrestricted Walsh transform is defined by:

Wila) = Wrwla).
k=0

* f is balanced if and only if W;(0) = 0.

* The nonlinearity of f can be computed as:

NL(f) =27t — % max

acky

Wy(a)l.
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Balancedness

For the Revisited HWBF:

« Ifn = 4m + 2, then W;(0) = —2(*™).

m

* If n = 4m, then W; (0) = 0.
Therefore, h is balanced if and only if n = 0 mod 4.
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Balancedness

For the Revisited HWBF:

« Ifn = 4m + 2, then W;(0) = —2(*™).

m

* If n = 4m, then W; (0) = 0.
Therefore, h is balanced if and only if n = 0 mod 4.

We proved this by relating Wy, ;. to Wy .
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From h to d

Lemma

For every a € F§ and every k, there exists a b € F5 such that:

hk(@) = Wa(b).

The result remains true if we replace h by a function which is weightwise
quadratic with n/2 quadratic terms in direct sum on each slice.
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Lemma

For every a € F§ and every k, there exists a b € F5 such that:
hk(@) = Wa(b).

The result remains true if we replace h by a function which is weightwise
quadratic with n/2 quadratic terms in direct sum on each slice.

Let us find a bound Wy i(b)| < B,, that works for every b € Fy and
every k. Then:

Wila) <D Wi i@l < (n+1)B,.
k=0
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Generating function

For this, we study the following generating function, with a € F3:

Pa(z) = Z Wd,k(a)zk.

k>0
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We can express it in terms of three integers:
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Generating function

For this, we study the following generating function, with a € F3:

Pa(z) = Z Wd,k(a)zk.

k>0

We can express it in terms of three integers:

pi=#{i € [1,n/2] | (agi—1,a2) = (1,1)},
q:=#{i€[1,n/2] | (azi—1,a2;) = (0,0)},
ri=#{i e [1,n/2] | (agi—1,a2;) = (0,1) or (1,0)}.

Proposition

Pi(2)=(—-2"+2z+ )P(=22-22+1)7(22+1)"
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Cauchy’s estimate

* Recall that Y, o War(a)z" = Pa(2).
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Cauchy’s estimate

* Recall that Y, o War(a)z" = Pa(2).

e Therefore:
dk‘

k' . Wd)k((l) = @

Pa(z)lz:0~
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Cauchy’s estimate

* Recall that Y, o War(a)z" = Pa(2).

* Therefore:

dk‘
dkz
* On the other hand, by Cauchy’s estimate:

k- Wan(a) = —— Pa(2)]s—0.

dk
] Pa(2)lzs

dkz

< k- max |P,(2)| < k- 2374,

|lz|=
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Cauchy’s estimate

* Recall that Y, o War(a)z" = Pa(2).

* Therefore:

dk‘
dkz
* On the other hand, by Cauchy’s estimate:

k- Wan(a) = —— Pa(2)]s—0.

dk
] Pa(2)lzs

dkz

< k- max |P,(2)| < k- 2374,

|lz|=

For every a € Fy and every k, we have:

(Wak(a)| < 257/4.
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Bounds on the Walsh transform of h

N g 1 .231’7,/4
maxWila)l < (n+1)
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Bounds on the Walsh transform of h

N g 1 .231’7,/4
maxWila)l < (n+1)

[iFf 5 Fy | Llogy(maxa Wy(a)))
h 34+ 0(1)
h 1+o(1)
Maj 1+o0(1)
Bent functions 14+0(1)
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Generalization

For a function f : Yy — Fy which is weightwise quadratic with
t € [0,n/2] quadratic terms in direct sum on each slice, we have:

1
~ log,(m < p+o(l),
- ng(a€%§|wf(a)‘) 1+ o(1)

where 1 only depends on A :=t/n:

Al 1 (=22 42x+av/AT—1a2) . 1
+ 3 log2< (VA=) if A > g,
1—A if A< ¢

Tim Seuré Revisited Hidden Weight Bit Function 11/14



Generalization
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The paper also contains:

* tighter nonlinearity bounds for l~1, for small n;
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Takeaways

® Nonlinearity bounds for a wide variety of weightwise quadratic functions have been found.
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Takeaways

® Nonlinearity bounds for a wide variety of weightwise quadratic functions have been found.

» Techniques from complex analysis can be used to study Boolean
functions.

. [t’s a lot of fun!
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(Questions?
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