
Deep Neural Cryptography

Adi Shamir
Computer Science Dept

Weizmann Institute of Science
Israel

Joint work with David Gerault (TII), Anna Hambitzer (TII), and
Eyal Ronen (Tel Aviv University)

There are two major research areas in CS with almost no
intersection so far:

Cryptography
(essentially digital, mapping
bit strings to bit strings)

Deep learning

(essentially analog,
mapping real numbers
to real numbers)

For 2000 years, we used analog computers
 Antikythera mechanism Solving differential

equations
The Norden bomb sight

About 70 years ago, we completely switched to digital
computers

 The Colossus code
breaking computer

IBM System 360 Microprocessors

They are back! The MAGA movement of the last 20 years
(Make Analog Great Again)

 Quantum computers
(with complex valued superpositions
in qubits)

Deep Neural Networks
(with real valued
inputs and weights)

Neuromorphic
computers (with
time-coded
spiking networks)

Even our digital computers have analog characteristics, used
in side channel attacks

Various emanations
from digital computers

Cryptanalysis of
AES by analyzing
power traces

Fault attacks
with modified
clock pulses

The landscape of analog/digital security
Users want to encrypt

digital data,
leaky computer

digital data,
digital computer

Analog data
(problematic)

digital data,
analog computer

The landscape of analog/digital security
users

adversaries

digital data,
leaky computer

digital data,
digital computer

digital
attack

analog

attack

digital data,
analog computer

The landscape of analog/digital security
users

adversaries

digital data,
leaky computer

digital data,
digital computer

digital
attack

analog

attack

standard
cryptography

digital data,
analog computer

The landscape of analog/digital security
users

adversaries

digital data,
leaky computer

digital data,
digital computer

digital
attack

analog

attack

standard
cryptography

side channel
attacks

digital data,
analog computer

The landscape of analog/digital security
users

adversaries

digital data,
leaky computer

digital data,
digital computer

digital
attack

analog

attack

standard
cryptography

side channel
attacks

digital data,
analog computer

unreasonable
restriction

The landscape of analog/digital security
users

adversaries

digital data,
leaky computer

digital data,
digital computer

digital
attack

analog

attack

standard
cryptography

side channel
attacks

digital data,
analog computer

unreasonable
restriction

meaningless

The Goldwasser, Kim, Vaikuntanathan, and Zamir
FOCS‘2022 Paper

• They considered the case in which the only allowed inputs to the
DNN are zeroes and ones, and just used the universality of DNN’s
•While technically correct, they missed all the fun…

The landscape of analog/digital security
users

adversaries

digital data,
leaky computer

digital data,
digital computer

digital
attack

analog

attack

standard
cryptography

side channel
attacks

digital data,
analog computer

Goldwasser+

FOCS 2022
unreasonable
restriction

meaningless

The landscape of analog/digital security
users

adversaries

digital data,
leaky computer

digital data,
digital computer

digital
attack

analog

attack

standard
cryptography

side channel
attacks

digital data,
analog computer

Goldwasser+

FOCS 2022
unreasonable
restriction

meaningless this
paper

The layered structure of DNN computers
• Deep neural networks have multiple layers, where each layer typically

consists of a linear mapping with real valued coefficients followed by
the ReLU activation functions applied to all its outputs

ReLU(x)=MAX(x,0)

Can we implement digital cryptography on such an analog
computational model?

• ReLU-based DNN’s are digitally universal, since they can easily
implement the basic Boolean functions of “AND” “OR” and “NOT”

• ReLU-based DNN’s are also analogly universal, since they can
approximate any continuous real-valued function using a
sufficiently wide network with one hidden layer

•While we already know that DNN’s can correctly implement any
digital cryptographic function, the question whether such
implementations are secure had not been analyzed so far

How secret keys are handled in the DNN
• The secret key can be provided as a sequence of additional inputs; we

assume that the adversary cannot see or change these inputs

K E
K

P C

This is a totally new security playground with new rules
and new techniques

• For example, the attacker can ask the DNN to encrypt the “plaintext” P
whose “bits” are (0.3, -7, , …) and obtain the “ciphertext” (-2.7, √2,…)

• For example, the attacker can apply a jitter attack, in which he increases or
decreases the value of one “bit” by ±ε, and observe whether the
“ciphertext” changes or not. This is a stronger form of differential
cryptanalysis, where the attacker can only flip 0/1 values

• For example, the attacker can analyze the piecewise linear output as the
input follows a straight line between two plaintexts P1 and P2, as I did in a
Eurocrypt’24 paper on extracting the parameters of DNN’s

Π

Our basic tool: corner functions
• Consider an n-dimensional Boolean cube with a single 1 at one of its corners,

and 0’s at all the other corners. We can easily implement this function with a
single ReLU applied to a linear combination of its inputs
• For example, consider a 3D cube with a single 1 output at corner 101. This

discrete mapping can be implemented with the continuous corner function
ReLU(x1-x2+x3-1) which is 0 at all corners except 101

A side note: How intelligent are current LLM’s?
• To get a professional looking drawing of a corner function, I asked

several leading generative AI systems to help me. Here is Gemini:

The difficulty of finding the special corner
•We now consider the following search problem: We are given a black

box which implements some unknown corner function. How many
queries are needed to find its special corner?

• If we are only allowed to query the black box with binary inputs, we
need Ω() queries since we learn nothing from all the 0 answers

• (A side remark: This is exactly the search problem for which Grover’s
algorithm can improve the search complexity to Ο(when we
allow superpositions of 0’s and 1’s on a quantum computer)

2𝑛

2𝑛/2)

The difficulty of finding the special corner

• However, if we are allowed to query the black box with real valued
inputs, we can find the special corner with just n queries by starting at
the center of the cube (0.5, 0.5, …, 0.5), and move a distance n in any
one of n main directions (to (0.5+n, 0.5, …, 0.5), …, (0.5, 0.5, …,
0.5+n)). A positive output produced for the i-th such query proves that
this bit is 1 in the special corner, while a zero output proves that this
bit is 0 in the special corner.

• This demonstrates a provably exponential gap between the query
complexities of the search problem in the two computational models

How to implement Cryptography on DNN’s:
The example of AES

• The way we usually construct DNN’s is via training

•We can collect a large number of plaintext/ciphertext pairs, and try to
iteratively use gradient descent to optimize the weights of the network

• This had been tried multiple times, but always failed for AES, since a
good cryptosystem destroys all the simple patterns in the training data

• The resultant network can easily memorize all the training examples,
but can’t generalize the mapping to new inputs

How to implement Cryptography on DNN’s:
The example of AES

• Everything in AES can be implemented with just two types of
operations: Mapping 8-bit inputs to 8-bit outputs (Sbox,
multiplication of a byte by the constants 2 and 3 in the AES finite
field), and mapping 2-bit inputs to 1-bit outputs (XOR’s of subkeys,
and XOR’s in the linear mixing)

• By using corner functions, we can implement any Boolean function
with a small number of input bits as a simple ReLU-based DNN

Implementing Sbox using corner functions
• Consider the 8-dim Boolean cube which specifies one of the 8 output bits of the Sbox. Since the Sbox is

balanced, exactly 128 of its 256 corners are labeled with 1 and the other 128 corners are labeled with 0
• For each one of the 128 corners labeled with 1, prepare a single neuron implementation of its corner function

Implementing Sbox using corner functions
• Each output bit of the Sbox can be implemented as the sum of these 128

corner functions. This requires one hidden layer with 128 neurons

• To implement all 8 output bits, place 8x128=1024 neurons in parallel in the
same hidden layer, and sum each group of 128 separately

To implement each XOR, use 2 neurons
• The definition XOR(x1,x2) = ReLU(x1-x2) + ReLU(x2-x1) is a special case of

the general Boolean cube construction since XOR(x1,x2) is a 2-dim cube
with two corners outputing 0 and two corners outputing 1

•We can thus implement everything in AES as sums of corner functions

•We call this the natural implementation of AES in a DNN

• It is correct in the sense that it computes the correct 0/1 outputs for any
collection of 0/1 inputs; it computes something weird otherwise

Is this natural implementation secure when the
adversary can use real valued inputs?

• The answer is that these implementations can be easily broken

• Almost any secret key block cipher (including AES) starts by
XOR’ing each input bit xi with some key bit ki

•We will now show how to recover all the ki bits used in the first
round of the encryption via a simple jitter attack

Attacking the natural implementation of XOR
•When implemented XOR as the sum of two separated corner functions:
•We can use xi=0, and distinguish between ki=0 and ki=1 by jittering xi: If

ki=0 the output is always stable, while if ki=1 the output (usually) jitters

The natural implementation of bitwise XOR
• Implementing XOR as the sum of two back-to-back corner functions:
	 	 XOR(xi,ki) = ReLU(xi-ki) + ReLU(ki-xi)
• In case (c) we look for jitter symmetry; in the input-sanitized case (d) we can’t jitter in both directions so we need a different

kind of attack

Perfect sanitization, can’t be
implemented with ReLU’s

Partial sanitization can be
realized with a simple DNN:
STEP(x)=ReLU(x)-ReLU(x-1)
Attacker can only use input
values in the range [0,1]

Perfect sanitization,
can’t be implemented
with ReLU’s

A potential solution: try to sanitize all input values to restrict the power of the
adversary

1/21

1 1 1

10

Attacking the input-sanitized version of AES

• In AES, after XOR’ing a group of 8 input bits x1…x8 with 8 key bits
k1,…k8, we map the resultant 8 bits y1,…y8 to z1…z8 via an 8-bit
to 8-bit Sbox (i.e., z1…z8=Sbox(x1…x8 XOR k1…k8))

• Assume that each output bit zi of the Sbox is naturally
implemented as a sum of 128 corner functions over the 8-
dimensional cube of yi values

Attacking the input-sanitized version of AES
•When we jitter the input y1,…,y8 around any combination of 0/1

values, an output bit zi remains stable if and only if zi=0 for that input

•When we concatenate the 8 output bits z1,…z8, all of them remain
stable simultaneously if and only if the 0/1 output of the Sbox is 0…0

• If at least one of the eight 0/1 outputs of the Sbox is not 0, the 8
output values of the Sbox will jitter, and this jitter is likely to avalanche
all the way to the ciphertext values, which will also jitter

Attacking the input-sanitized version of AES
•We now have a way to test if the output of any particular Sbox in the

first round of AES is z1,…,z8=00000000 ; this happens if and only if the
input to this Sbox is y1,…,y8=01010010 . Since we know the plaintext
bits x1…x8, we can now recover the 8 corresponding key bits as k1…k8
= x1…x8 XOR 01010010

• Repeating for all the 16 Sboxes in the first round of AES recovers the full
128 bit key

• This attack was experimentally verified using negligible time with 100%
success rate

Can we find a different implementation of AES which is secure
against any such attack?

• At first we were skeptical, since attackers have so much additional
power in this analog model of computation (as in the case of side
channel attacks, where no perfectly secure solutions are known)

• However, after thinking hard, we found a provably secure way to
implement any cryptographic functionality in a ReLU-based DNN

First step: sanitize the inputs more tightly

• Apply a tighter step function to each input separately:

0

1

10.33 0.66

STEP(x)=3*(ReLU(x-0.33)-ReLU(x-0.66))OLD-STEP(x)=ReLU(x)-ReLU(x-1)

1

10

Second step: Identify the “danger zone”
• Consider the multiwall in the input space, which is the high dimensional

cross where at least one input coordinate lies between 0.33 to 0.66
• This is the “danger zone” where the sanitized inputs may not be 0 or 1
• In each orthant (separated from all other orthants by the multiwall), the

sanitized inputs are a constant binary strings of just 0’s and 1’s

Third step: force all outputs for inputs in the “danger zone”
to be identically zero

• Problem: we have to continuously connect these zero values on the multiwall with the
correct non-zero values required at the unique binary point in each orthant, using only
ReLU’s and linear functions

• This smooth interpolation should not leak any information on the key

Third step: force all outputs for inputs in the “danger
zone” to be identically zero

• In addition to the tighter STEP function, we introduce a new function
RECT(x)=ReLU(x)-ReLU(x-0.33)-ReLU(x-0.66)+ReLU(x-1)
•We then define MASK(x1,…,xn) = ∑RECT(xi) for i=1,…,n

The final DNN implementation
• Combines all the previously defined filter functions, where

each one of them is crucial

Third step: force all outputs for inputs in the “danger
zone” to be identically zero

•MASK(x1,…,xn) is a smoothed continuous version of the multiwall
• It has a value of at least 1 at any point in the multiwall
• It has a value of 0 at any binary point in the input space (with just 0/1)

Why this DNN implementation is correct
• For any binary vector of 0/1 values, the initial input sanitization leaves

the inputs unchanged

• The (potentially insecure) AES implementation then provides the
correct 0/1 output values

• These outputs are again left unchanged by the final STEP sanitizations

• The sanitized outputs are not affected by the zero-valued MASK

Why this implementation is provably secure
•We want to show that real valued queries do not leak any

information about the secret key that is not already leaked via binary
valued queries to the primitive.

• Intuition: Any input within the danger zone yields only zero outputs

• For any input in a particular orthant which is not in the danger zone,
the output is completely determined by the output of AES at the
unique binary input contained in that orthant, interpolated smoothly
by the MASK of the known values of the plaintext “bits”. This can be
computed without any knowledge of the secret key bits!

The extra cost of securing a DNN implementation
• To obtain our secure DNN implementation of a cryptographic

functionality, we can start with any (potentially insecure) DNN
implementation such as the easily breakable natural implementation
described above

•We can then make it secure by adding a constant number of additional
layers and a linear number of additional ReLU-based neurons (as a
function of the number of input and output values)

• This is a negligible cost for any nontrivial DNN, and thus our construction
is very easy and completely practical

How to secure other cryptographic functionalities
• Consider, for example, the case of public key signature verification

• This functionality has no secret key, so our security guarantee (of not
leaking any information about it) is meaningless

• The functionality should accept a message M and a signature S, and
compute a function VERIFY(M,S) which should output 1 when the
signature is valid and 0 when the signature is not valid.

• Given a DNN implementation of VERIFY, the attacker wins if he can
produce some real-valued S’ which makes Verify(M,S’)=1

How to secure other cryptographic functionalities
• The security of the signature scheme in the binary case does not imply

that its DNN implementation is also secure for real valued signatures

•We can use our sanitization techniques to force the output of VERIFY
to be 0 for any real valued signature in the danger zone

• This makes our DNN implementation provably secure in the sense that
any attacker which can find a real valued S’ satisfying the DNN version
of VERIFY can also find a binary S satisfying the original (binary) version
of VERIFY

Using other activation functions in the DNN
• So far we have assumed that the DNN uses the ReLU activation

function. Can we apply our attacks to DNN’s with other activation
functions such as sigmoid(x) = 1/{1 + exp(-x)} ?
• The answer is yes, with some modifications
• Implementing XOR(x,k) with the sigmoid function:
• Consider the function c1*{sigmoid(x-k+1) + sigmoid(k-x+1)} – c2

• With a proper choice of the constants c1 and c2, we can make sure that
for inputs (0,0) and (1,1) the outputs will be 0, and for (0,1) and (1,0) the
output will be 1.
• Once again, if we jitter x around 0, then when k=0 the output will change

symmetrically, while when k=1 the output will change asymmetrically, so
we can extract the key bit k by observing the values of the final output

Conclusions
• In this talk I defined the new research area of how to implement digital

cryptography in an analog computer

• I defined the notion of natural implementation of schemes

• I demonstrated the insecurity of such natural implementations

• I described a different implementation which is provably secure

