

Practical Attack on All Parameters of the HPPC Signature Scheme

Pierre Briaud¹, Maxime Bros², Ray Perlner² and **Daniel Smith-Tone**^{2,3}

 $$^{1}\mathrm{Simula}$ UiB $^{2}\mathrm{National}$ Institute of Standards and Technology $^{3}\mathrm{University}$ of Louisville

14 August, 2025

NIST Additional Signatures

Standards and Technology

Candidate: HPPC

Standards and Technology

Foundational Idea

Standards and Technology

U.S. Department of Commerce

Exploit the universal property of the tensor product.

Foundational Idea

U.S. Department of Commerce

Exploit the universal property of the tensor product to model the product in F_{2^n} .

Foundational Idea

U.S. Department of Commerce

Exploit the universal property of the tensor product to model the product in F_{2^n} .

Given
$$F_{2^n} = F_2[x]/\langle f(x) \rangle$$
, we have $\mathbf{M} = \begin{bmatrix} \mathbf{I}_n & \mathbf{C}_f & \cdots & \mathbf{C}_f^{n-1} \end{bmatrix}$.

Utility

Standards and Technology

U.S. Department of Commerce

The mixed product property allows for some tricks.

Mixed Product Property

$$(A \otimes B)(C \otimes D) = (AC) \otimes (BD).$$

$$\phi^{-1}\left(\phi\left(\mathsf{Ax}\right)\phi\left(\mathsf{Bx}\right)\right) = \mathsf{M}(\mathsf{A}\otimes\mathsf{B})(\mathsf{x}\otimes\mathsf{x}).$$

SQUARE in this Framework

Consider SQUARE. Choose invertible $S, T : F_q^n \to F_q^n$ and define $F(X) = X^2$. The SQUARE public key is given by $P(\mathbf{x}) = T \circ \phi^{-1} \circ F \circ \phi \circ S(\mathbf{x})$. With the above framework, we may express this map as

$$P(\mathbf{x}) = T(\mathbf{M}(S \otimes S)(\mathbf{x} \otimes \mathbf{x})),$$

or, using matrix forms S, T of the linear maps S, T,

$$P(x) = TM(S \otimes S)(x \otimes x).$$

U.S. Department of Commerce

Hidden Product of Polynomials Composition Choose $n \in \mathbb{Z}^+$ and construct $F_{2^n} = F[x]/\langle f(x)\rangle$ using the irreducible f. Fix matrices **S**, **T**, **M** as above. Choose two linearized polynomials

$$\ell_1(X) = \sum_{i=0}^{n-1} \alpha_i X^{2^i}$$
, and $\ell_2(X) = \sum_{i=0}^d \beta_i X^{2^i}$.

Let L_1, L_2 be the matrix forms of ℓ_1, ℓ_2 .

$$P(\mathbf{x}) = \mathsf{TM}(\mathsf{L}_1 \otimes \mathsf{L}_2 \mathsf{L}_1)(\mathsf{S} \otimes \mathsf{S})(\mathbf{x} \otimes \mathbf{x}).$$

U.S. Department of Commerce Inversion

Note that if $\mathbf{x}' = \mathbf{L}_1 \mathbf{S} \mathbf{x}$, we have

$$Q(\mathbf{x}') = \mathsf{TM}(\mathsf{I}_n \otimes \mathsf{L}_2)(\mathbf{x}' \otimes \mathbf{x}') = \mathsf{TM}(\mathsf{L}_1 \otimes \mathsf{L}_2\mathsf{L}_1)(\mathsf{S} \otimes \mathsf{S})(\mathbf{x} \otimes \mathbf{x}) = P(\mathbf{x}).$$

Since
$$\mathbf{M}(\mathbf{I}_n \otimes \mathbf{L}_2)(\mathbf{x}' \otimes \mathbf{x}') = \phi^{-1}(\phi(\mathbf{x}')\phi(\mathbf{L}_2\mathbf{x}'))$$
, allowing $X' = \phi(\mathbf{x}')$,

$$Q(\mathbf{x}') = \mathbf{T}\phi^{-1}(X'\ell_2(X')).$$

We may invert $G(X') = X'\ell_2(X')$ (of degree $2^d + 1$) by Berlekamp.

On Semi-Regularity

LLS Department of Commerce

The specification of HPPC claims (Section 7.2) that experiments support the semi-regularity of $P(\mathbf{x}) - \mathbf{y}$. However...

- Evidence suggests that experiments used the SageMath command degree_of_semi_regularity.
- The SageMath command degree_of_semi_regularity <u>assumes</u> a semi-regular input.

Thus, no actual experiment testing the semi-regular claim was performed.

Degree Falls

Our work toward a direct attack on HPPC

- Experiments targeting degree 3 show nontrivial degree falls.
- Specifically, two steps of F4 at degree 3 exhibit degree falls.
- We prove the existence and describe the structure of these degree falls in Propositions 1 and 2.

These results significantly undermine the claims of security. (The specification uses the direct attack (Table 9) as the limiting attack.)

HPPC is Specially Structured HFE

Recall that the inversion method with the private key uses the equivalent form

$$P(\mathbf{x}) = T \circ \phi^{-1} \circ G \circ \ell_1 \circ \phi \circ S(\mathbf{x}).$$

Setting F = G and $S' = \phi^{-1} \circ \ell_1 \circ \phi \circ S$, we have

$$P(\mathbf{x}) = T \circ \phi^{-1} \circ F \circ \phi \circ S'(\mathbf{x}).$$

(The HPPC specification only considers $F' = G \circ \ell_1$ and assumes that this map is of large Q-rank.)

Attacking HPPC as HFE

The observation that the central map (the map G above in our formulation) has degree bound $2^d + 1$ is sufficient to break HPPC.

- Generic HFE with degree bound $D = 2^d + 1$ has Q-rank d + 1.
- Using the big field support minors approach of BBCPS-TV22 results in a reduction of security to 74 bits.

But this observation is not the end of the story.

More on the Q-rank of HPPC

Recall that we can express the central map as

$$G(X) = \phi(\mathbf{M}(\mathbf{I}_n \otimes \mathbf{L}_2)(\phi^{-1}(X) \otimes \phi^{-1}(X))) = X\ell_2(X)$$

Using the definition of ℓ_2 and the convenient F_{2^n} -algebra

$$\mathbb{A} = \{(\alpha, \alpha^2, \dots, \alpha^{2^{n-1}}) : \alpha \in F_{2^n}\},\$$

$$[G(X)] = \begin{bmatrix} X & X^2 & \cdots & X^{2^{n-1}} \end{bmatrix} \begin{bmatrix} \beta_0 & \beta_1 & \cdots & \beta_d & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} X \\ X^2 \\ \vdots \\ X^{2^{n-1}} \end{bmatrix}.$$

For char(2) HFE attacks, we consider the sum of this matrix and its transpose. Thus, we have a target rank of 2, not d + 1 (= 11 NIST Security Level-II case).

Special as Q-rank 2 HFE

In general, the MinRank attack for even rank HFE in char(2) is complicated:

- Model rank condition and
- solve for input transformation simultaneously.

Complication arises due to spurious solutions related to the Frobenius:

$$\lambda F^{q^i} + \mu F^{q^{i+1}}$$
 has same Q-rank.

For G above, $\lambda G^{q^i} + \mu G^{q^{i+1}}$ has Q-rank 4 in general.

MinRank Step Easier

The MinRank proceeds similar to the odd characteristic case for HFE.

- **1** Solve MinRank on public quadratic forms (solutions in F_{2^n}),
- Interpret solution as linearized polynomial form of output transformation,
- Impose linear constraints on recovered low rank matrix for known 0 locations,
- Solve for linearized polynomial form of inverse of input transformation.

Effective in recovering a private key practically.

The Attack is Practical

Attack running times for each HPPC security level (in seconds).

NIST Level	n	κ	Build SM	Total Time
2	128	17	11.320	$464.819 \approx 00:07:45$
4	192	21	49.570	$5552.319 \approx 01:32:32$
5	256	12*	27.970*	$25290.409 \approx 07:01:30^*$

^{*} Due to memory limitations, we included a suboptimal number of columns and solved at a higher degree than 2.

Directions

Could HPPC be repaired?

- As a quadratic scheme...
 - e.g Replace $G(X) = X\ell_2(X)$ with a sum of similar maps

$$F(X) = \sum_{i=0}^{k-1} X^{2^i} \ell_{2,k}(X) \dots$$

- Still has HFE structure with a degree bound $2^d + 1$.
- Using higher rank tensors, e.g. 3-tensors...
 - It's been done before, for example 3-WISE, cubic HFE.
 - Much less efficient with scaling of parameters.
 - These schemes are also essentially broken.

Thank you for your attention.

References:

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

Introduction

Cryptanalysis Conclusion

[R23] B. G. Rodriguez. HPPC: Hidden Polynomial Product Composition. Cryptol. ePrint Arch. https://eprint.iacr.org/2023/830 (2023).

[BBVPS-TV22] J Baena, P Briaud, D. Cabarcas, R. Perlner, D. Smith-Tone and J. Verbel. Improving Support-Minors Rank Attacks: Applications to GeMSS and Rainbow. Crypto 2022, Springer, LNCS 13509, pp.376-405 (2022).

