
Secret in OnePiece: Single-Bit Fault Attack on Kyber

Jian Wang1,2, Weiqiong Cao1,3, Hua Chen1, Haoyuan Li3

1 Trusted Computing and Information Assurance Laboratory,
Institute of Software, Chinese Academy of Sciences, Beijing, China

2University of Chinese Academy of Sciences, Beijing, China
3 Zhongguancun Laboratory, Beijing, China

August 13, 2025

Outline

1 Introduction
Background
Motivation

2 Methodology
Fault Analysis
Attack Description

3 Fault Injection Analysis

4 Experiments
Simulation
Practical Attack

5 Results Analysis

1 / 32

NIST PQC Standardization

1 Selected algorithms
CRYSTALS-Kyber (FIPS-203, ML-KEM)
CRYSTALS-Dilithium (FIPS-204, ML-DSA)
FALCON
SPHINSC+ (FIPS-205, SLH-DSA)
HQC (Round4)

2 History

2016 2022 2024 2025

Call for Proposal 3rd Standard 4th

2 / 32

Kyber KEM

Key-Encapsulation Mechanism

KeyGen

public key

Encaps

Bob’s copy of the
session key

secret key

Decaps

Alice’s copy of the
session key

ciphertext

3 / 32

Related works I

Fujisaki-Okamoto transform
FO transform → CCA Security
The CCA-secure decapsulation consists of a decryption, a
re-encryption and a ciphertext equality checking.
FO transform can be regarded as a redundancy countermeasure，
making traditional fault attacks nearly infeasible.

ct Decryption Re-encryption ct′

ct
?= ct′

Session Key

m

4 / 32

Related works II

Fault Attacks on Kyber
Injecting faults to disrupt equality checks, enabling chosen-ciphertext
attacks [XIU+21].
Injecting faults and observing decapsulation success or failure to infer
secret-key information [PP21, Del22].

ct Decryption Re-encryption ct′

ct
?= ct′

Session Key

m

E

E

5 / 32

Motivation

Masked Kyber
Conversion between arithmetic and Boolean masking greatly
complicates the implementation.
Randomness introduced by masking may aid fault attacks, [Del22]
was the first to explore this, proposing an attack on linear operations.
The added complexity may enlarge the attack surface.
[BGR+21] proposed an arbitrary-order masked Kyber and a new
message decoder.
This work builds on [BGR+21] to investigate fault-attack risks from
masked nonlinear components.

6 / 32

Message Decoding

Decryption
Arithmetic: compute mp = vl − s ◦ ul;
Decoding: map the noisy polynomial mp to the message m.

Algorithm KyberKEM.Decaps
Require: ciphertext c
Require: private key sk = (s, pk, h, z)
Ensure: session key K
1: m← KyberPKE.Dec(s, c)
2: (K, r)← G(m, h)
3: K̄ ← J(z||c)
4: c′ ← KyberPKE.Enc(pk, m, r)
5: if c′ ̸= c then
6: K ← K̄
7: end if
8: return K

Algorithm KyberPKE.Dec
Require: private key s
Require: ciphertext c = {c1, c2}
Ensure: message m
1: ul ← Decompressdu

(Unpack(c1))
2: vl ← Decompressdv

(Unpack(c2))
3: mp← vl − s ◦ ul
4: m← Decode(mp)
5: return m

7 / 32

Message Decoding

Message encoding/decoding

Enocde(m) =

⌈q

2
⌋, if m = 1

0, otherwise

Deocde(z) =

1, if z ∈ [q
4

,
3q

4
]

0, otherwise

0

q
4

q
2

3q
4

In Kyber, q = 3329, ⌈ q2 ⌋ = 1665.

8 / 32

Masking Message Decoder I

Basic workflow
1 Add offset: increase z by 3q

4 ;

0

q
4

q
2

3q
4

0

q
4

q
2

3q
4

2 Decode: check if z ≥ 1665 (⌈q/2⌋) .

Decodes(z) = ¬z11 ⊕ (¬z11 · z10 · z9 · (z8 ⊕ (¬z8 · z7)))

9 / 32

Masking Message Decoder II

Detailed implementation
A2B, SecAND, SecXOR, SecREF, Bitslice

Algorithm Masked Decoder
Require: a(·)A, a ∈ Zq [X].
Ensure: m′(·)B , m′ = Decode(a) ∈ Z2256 .
1: for i← 0 to n− 1 do
2: a

(0)A
i

= a
(0)A
i

+
⌊

3q
4

⌋
mod q

3: a
(·)B
i

= A2B(a(·)A
i

)
4: end for
5: z(·)B = Bitslice(a(·)B)
6: m′(·)B = SecAND(SecREF(¬z(·)B

8), z(·)B
7)

7: m′(·)B = SecREF(SecXOR(m′(·)B , z
(·)B
8))

8: m′(·)B = SecAND(m′(·)B , z
(·)B
9)

9: m′(·)B = SecAND(m′(·)B , z
(·)B
10)

10: m′(·)B = SecAND(m′(·)B ,¬z(·)B
11)

11: m′(·)B = SecXOR(m′(·)B ,¬z(·)B
11)

12: return m′(·)B

10 / 32

Outline

1 Introduction
Background
Motivation

2 Methodology
Fault Analysis
Attack Description

3 Fault Injection Analysis

4 Experiments
Simulation
Practical Attack

5 Results Analysis

11 / 32

Attacker model

What can an attacker do?
1 Perform encapsulation or trigger decapsulation as needed.
2 Inject faults during decapsulation.
3 Observe the session key to detect decapsulation failures.

Target Device

K

K ′

Ciphertext

12 / 32

Fault Analysis I

Observation on masked decoding
Only z7 . . . z11 are involved.

Decodes(z) = ¬z11 ⊕
(
¬z11 · ¬(z10 · z9 · (z8 ⊕ (¬z8 · z7)))

)
Analyze the result of bit flipping, using z10 as an example.
1 If z11 = 1, the decoding result is fixed at 0, flipping z10 will not impact

the decoding result.
2 If z9 = 0 or (z8 ⊕ (¬z8 · z7)) = 0, the decoding result is fixed at 0.
3 Recursive analysis yields the following cases:

z10 z9 z8 z7 Interval of z d
1 1 0 1 [1664, 2048) 0 → 11 1 1 0 [1792, 2048)
0 1 0 1 [640, 1024) 1 → 00 1 1 0 [768, 1024)

13 / 32

Fault Analysis II

Interval Indication from Fault-Injected Decapsulation
1 Analysis of all 5 bits:

Decapsulation Failure Decapsulation Success
z11 [0, 1792) ∪ [2048, 3329) [1792, 2048)
z10 [640, 1024) ∪ [1664, 2048) [0, 640) ∪ [1024, 1664)
z9 [1152, 2048) [0, 1152)
z8 [1664, 1792) [0, 1664) ∪ [1792, 2048)
z7 [1792, 1920) [0, 1792) ∪ [1920, 2048)

2 Can we make use of all this information?

14 / 32

Fault Analysis III

Usability of interval information
A decoded coefficient can be expressed as m ∗ ⌈ q

2 ⌋ + δ.
0

q
4

q
2

3q
4

The probability of the coefficient falling within a certain range can be
estimated from the distribution of noise.
A decapsulation failure occurs after flipping z8, then z ∈ [1664, 1792).
However, this event has a very low probability of 2−103.9.

15 / 32

Fault Analysis IV

Only z10 is suitable as a target.
If flipping z10 causes decapsulation failure:
1 z ∈ [640, 1024), with probability of 1 − 2−6.8 (≈ 99.1%)
2 z ∈ [1664, 2048), with probability 2−39.8

Set the target bit to 1 to ensure the decoded coefficient lies in
[640, 1024) when failure occurs, implying δ ∈ [−192, 192).

0

q
4

q
2

3q
4

0

q
4

q
2

3q
4

16 / 32

Attack Description I

The system of inequalities
1 The decoded noisy polynomial

mp = v + ∆v − (u + ∆u) ◦ s
= t ◦ r + e2 + ∆v − (A ◦ r + e1 + ∆u) ◦ s + m ∗ ⌈q/2⌋
= r ◦ e − (e1 + ∆u) ◦ s + e2 + ∆v + m ∗ ⌈q/2⌋.

= δ + m ∗ ⌈q/2⌋

When δ ∈ [−192, 192), a decapsulation failure is observed, resulting
in a positive inequality; otherwise, a negative inequality.

2 Repeat ω times to obtain a system of inequalities:

Mx+b =

(
(r)(0),−(e1 + ∆u)(0)

. . .
(r)(ω−1),−(e1 + ∆u)(ω−1)

)(
e
s

)
+e2+∆v ∈/∈ [−192, 192)

17 / 32

Attack Description II

Solving systems of inequalities
1 Initialize the distribution of secret coefficients:

Example:{−2 : 1
16

, −1 : 4
16

, 0 : 6
16

, 1 : 4
16

, 2 : 1
16

}

2 Update the distribution using inequalities.
The update rule for the k-th candidate of the j-th coefficient with the
i-th inequality is:

P[i, j, k] =

Pr

−192 ≤M[i, j](k − η1) +

 ∑
j′∈[0,ψ−1]\{j}

M[i, j′] ◦ x[j′]

+ b[i] < 192


3 After all iterations, select candidates with the highest probabilities as

predictions.

18 / 32

Attack Description III

Quick solver
Performance bottleneck: convolution operations

M[i, j′] ◦ x[j′]

Approximate Mx + b as a normal distribution X via the Central
Limit Theorem, with mean µ and standard deviation σ.
Convert X to standard normal distribution Z.

P[i, j, k] ≈ Pr
(

−192 − µ

σ
≤ Z <

192 − µ

σ

)
Compute probabilities efficiently using the standard normal
cumulative distribution function:

P[i, j, k] ≈ Fnorm(192 − µ

σ
) − Fnorm(−192 − µ

σ
)

19 / 32

Attack Description IV

Challenges in the Solving Process
1 Since δ centers around zero, most candidate values cause decryption

failure, making many inequalities weak in narrowing down the
possibilities.

2 The collected inequalities are highly imbalanced (e.g., 99 : 1), which
reduces the effectiveness of the solver.

Enhancing Attack Effectiveness via Inequality Filtering
1 Filter 1: Discard low-contribution inequalities offline by selecting

ciphertext elements (∆v + e2)[i] near the boundary ±192.
2 Filter 2: Improve inequality balance by rejection sampling, discarding

a proportion α of positive inequalities.

20 / 32

Outline

1 Introduction
Background
Motivation

2 Methodology
Fault Analysis
Attack Description

3 Fault Injection Analysis

4 Experiments
Simulation
Practical Attack

5 Results Analysis

21 / 32

Fault Injection on Masked Implementation I

1 Bit flipping via bit setting
In Boolean masking, fixing z

(i)
10 to 0 or 1 can induce a bit flip in z10

with some probability.
Repeat this process β times. If no failure occurs, then with
probability 1 − 2−β , z /∈ [640, 1024); otherwise, z ∈ [640, 1024). Only
negative inequalities may incur errors under this strategy.

2 Feasible fault injection

Fault model Injection Target

Bit-Flip A2B
Bitslice

Stuck-at 0/1 SecAND
Load/Store

Instruction Skip Bitslice

22 / 32

Fault Injection on Masked Implementation II

Bit flipping via instruction skipping
In bit-sliced implementations, skipping an assignment instruction can
effectively induce the desired fault:
1 Instruction skipping → Bit setting
2 Bit setting → Bit flipping

Normal representation Bit-sliced representation

23 / 32

Outline

1 Introduction
Background
Motivation

2 Methodology
Fault Analysis
Attack Description

3 Fault Injection Analysis

4 Experiments
Simulation
Practical Attack

5 Results Analysis

24 / 32

Simulation Experiments

Assessment of key recovery and error tolerance
1 Recovering the secret key requires about 30, 000, 540, 000 and 240,

000 inequalities for Kyber512, Kyber768 and Kyber1024, respectively.
2 Error rates up to 30% are tolerable, causing only a moderate increase

in required inequalities.

Figure: Solving filtered
inequalities for all three
security levels.

Figure: Solving filtered
inequalities for Kyber1024
with α = 0.94.

Figure: Solving corrupred
inequalities for Kyber512.

25 / 32

Practical Attack Experiments

Experiment setup
1 Target: STM32F405 board with ARM Cortex-M4 core
2 Fault Injection: Instruction skipping via clock glitching
3 Firmware: Masked implementation based on [BGR+21]

26 / 32

Practical Attack Experiments

Fault Profiling
1 Fault injection parameters: offset, width, ext_offset, repeat.
2 Scan parameters to find optimal injection timing.

offset width ext_offset repeat

[−20, 20] [1, 20] [1, 50] 1

3 Scan (offset, width) pairs to minimize failed fault injections.

27 / 32

Practical Attack Experiments

Results
1 With the final fault injection parameters and β = 10, we collect

50,000 inequalities, showing an error rate of about 6.2%.
2 Approximately 38,000 inequalities are needed to recover the full secret

key, corresponding to 380,000 faulted decapsulations.

28 / 32

Outline

1 Introduction
Background
Motivation

2 Methodology
Fault Analysis
Attack Description

3 Fault Injection Analysis

4 Experiments
Simulation
Practical Attack

5 Results Analysis

29 / 32

Comparison I

Comparison under perfect fault injection
1 This work explores risks introduced by the non-linear components in

masking implementations.
2 The collected inequalities are more imbalanced, providing less

information.
3 Consequently, a larger number of inequalities is required, especially for

Kyber1024.

Atatck
Target

Type of
Inequalities

Security
Level

No.
Inequalities

This work Decoder δ ∈/∈ [−192, 192)
Kyber512 36,000
Kyber768 54,000

Kyber1024 4,000,000

[Del22] Linear Parts δ ≥< 0
Kyber512 8,500
Kyber768 9,400

Kyber1024 12,000

30 / 32

Comparison II

Comparison in practical attack
1 Both attacks can be performed using clock glitching.
2 Our method achieves higher reliability, resulting in a higher success

rate with a smaller β.
3 Overall cost is lower, except for Kyber1024.
4 Unlike methods relying on manipulated ciphertexts (MC), our attack

is harder to defend.

Security
Level

No.
Inequalities β

Type of
Faults

MC
Req.

This work
Kyber512 36,000

≥ 10 Clock glitch 7Kyber768 54,000
Kyber1024 4,000,000

[Del22]
Kyber512 8,500

> 100 Clock glitch 4Kyber768 9,400
Kyber1024 12,000

31 / 32

Comparison III

Comprehensive Comparison
1 Both attacks target the masked decoder.
2 Our method collects inequalities that provide tighter interval

information, reducing the number of inequalities needed under perfect
fault injection.

3 Our method requires a weaker fault injection, resulting in
significantly fewer faulted decapsulations for comparable error
rates.

Type of
Inequalities

Security
Level

No.
Inequalities β

Type of
Faults

This work δ ∈/∈ [−192, 192)
Kyber512 36,000

≥ 10 Clock glitchKyber768 54,000
Kyber1024 4,000,000

[KCS+24] δ ≥< −192 Kyber512 60,000 ≥ 180 EM pulse

32 / 32

Reference

Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine van Vredendaal.
Masking Kyber: First- and higher-order implementations.
IACR TCHES, 2021(4):173–214, 2021.
https://tches.iacr.org/index.php/TCHES/article/view/9064.

Jeroen Delvaux.
Roulette: A diverse family of feasible fault attacks on masked Kyber.
IACR TCHES, 2022(4):637–660, 2022.

Suparna Kundu, Siddhartha Chowdhury, Sayandeep Saha, Angshuman Karmakar, Debdeep Mukhopadhyay,
and Ingrid Verbauwhede.
Carry your fault: A fault propagation attack on side-channel protected LWE-based KEM.
IACR TCHES, 2024(2):844–869, 2024.

Peter Pessl and Lukas Prokop.
Fault attacks on CCA-secure lattice KEMs.
IACR TCHES, 2021(2):37–60, 2021.
https://tches.iacr.org/index.php/TCHES/article/view/8787.

Keita Xagawa, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi Homma.
Fault-injection attacks against NIST’s post-quantum cryptography round 3 KEM candidates.
In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part II, volume 13091 of LNCS, pages
33–61. Springer, Cham, December 2021.

https://tches.iacr.org/index.php/TCHES/article/view/9064
https://tches.iacr.org/index.php/TCHES/article/view/8787

Thank you for your attention!

Email: wangjian2019@iscas.ac.cn

	Introduction
	
	Background
	Motivation

	Methodology
	
	Fault Analysis
	Attack Description

	Fault Injection Analysis
	

	Experiments
	
	Simulation
	Practical Attack

	Results Analysis
	

	Appendix
	Reference

