Secret in OnePiece: Single-Bit Fault Attack on Kyber

Jian Wang^{1,2}, Weiqiong Cao^{1,3}, Hua Chen¹, Haoyuan Li³

 1 Trusted Computing and Information Assurance Laboratory, Institute of Software, Chinese Academy of Sciences, Beijing, China 2 University of Chinese Academy of Sciences, Beijing, China 3 Zhongguancun Laboratory, Beijing, China

August 13, 2025

Outline

- Introduction
 - ▶ Background
 - ▶ Motivation
- 2 Methodology
 - ► Fault Analysis
 - ► Attack Description
- 3 Fault Injection Analysis
- 4 Experiments
 - **▶** Simulation
 - ► Practical Attack
- 6 Results Analysis

NIST PQC Standardization

- Selected algorithms
 - CRYSTALS-Kyber (FIPS-203, ML-KEM)
 - CRYSTALS-Dilithium (FIPS-204, ML-DSA)
 - FALCON
 - SPHINSC+ (FIPS-205, SLH-DSA)
 - HQC (Round4)
- # History

Kyber KEM

■ Key-Encapsulation Mechanism

Related works I

■ Fujisaki-Okamoto transform

- $f \Box$ FO transform o CCA Security
- ☐ The CCA-secure decapsulation consists of a decryption, a re-encryption and a ciphertext equality checking.
- FO transform can be regarded as a redundancy countermeasure, making traditional fault attacks nearly infeasible.

Related works II

■ Fault Attacks on Kyber

- □ Injecting faults to disrupt equality checks, enabling chosen-ciphertext attacks [XIU+21].
- Injecting faults and observing decapsulation success or failure to infer secret-key information [PP21, Del22].

Motivation

Masked Kyber

- Conversion between arithmetic and Boolean masking greatly complicates the implementation.
- Randomness introduced by masking may aid fault attacks, [Del22] was the first to explore this, proposing an attack on linear operations.
- The added complexity may enlarge the attack surface.
- [BGR+21] proposed an arbitrary-order masked Kyber and a new message decoder.
- □ This work builds on [BGR⁺21] to investigate fault-attack **risks** from masked **nonlinear components**.

Message Decoding

Decryption

- \square Arithmetic: compute $mp = v_l \mathbf{s} \circ \mathbf{u}_l$;
- lacksquare **Decoding**: map the noisy polynomial mp to the message m.

Algorithm KyberKEM.Decaps

Require: ciphertext c

Require: private key $sk = (\mathbf{s}, pk, h, z)$

 $\textbf{Ensure:} \ \operatorname{session} \ \operatorname{key} \ K$

1: $m \leftarrow \mathsf{KyberPKE.Dec}(\mathbf{s}, c)$

2: $(K,r) \leftarrow G(m,h)$

3: $\bar{K} \leftarrow J(z||c)$

4: $c' \leftarrow \mathsf{KyberPKE}.\mathsf{Enc}(pk, m, r)$

5: if $c' \neq c$ then

6: $K \leftarrow \bar{K}$

7: end if

8: **return** *K*

Algorithm KyberPKE.Dec

Require: private key $\mathbf s$

Require: ciphertext $c = \{c_1, c_2\}$

Ensure: message m

1: $\mathbf{u}_l \leftarrow \mathsf{Decompress}_{d_n}(\mathsf{Unpack}(c_1))$

2: $v_l \leftarrow \mathsf{Decompress}_{d_n}(\mathsf{Unpack}(c_2))$

3: $mp \leftarrow v_l - \mathbf{s} \circ \mathbf{u}_l$

4: $m \leftarrow \mathsf{Decode}(mp)$

5: return m

Message Decoding

■ Message encoding/decoding

$$\mathsf{Enocde}(m) = \begin{cases} \lceil \frac{q}{2} \rfloor, & \text{if } m = 1 \\ 0, & \text{otherwise} \end{cases}$$

In Kyber, q=3329, $\lceil \frac{q}{2} \rfloor =1665$.

Masking Message Decoder I

■ Basic workflow

1 Add offset: increase z by $\frac{3q}{4}$;

2 Decode: check if $z \ge 1665 (\lceil q/2 \rfloor)$.

$$\mathsf{Decode}^{s}(z) = \neg z_{11} \oplus (\neg z_{11} \cdot z_{10} \cdot z_{9} \cdot (z_{8} \oplus (\neg z_{8} \cdot z_{7})))$$

Masking Message Decoder II

- Detailed implementation
 - A2B, SecAND, SecXOR, SecREF, Bitslice

Algorithm Masked Decoder

```
Require: a^{(\cdot)A}, a \in \mathbb{Z}_a[X].
Ensure: m'^{(\cdot)B}, m' = \mathsf{Decode}(a) \in \mathbb{Z}_{2256}.
1: for i \leftarrow 0 to n-1 do
2: a_i^{(0)A} = a_i^{(0)A} + \left| \frac{3q}{4} \right| \mod q
3: a_i^{(\cdot)B} = A2B(a_i^{(\cdot)A})
4: end for \mathbf{S} \cdot \mathbf{x}^{(\cdot)B} = \text{Bitslice}(a^{(\cdot)B})
6: m'^{(\cdot)B} = \text{SecAND}(\text{SecREF}(\neg z_{s}^{(\cdot)B}), z_{7}^{(\cdot)B})
7: m'^{(\cdot)B} = SecREF(SecXOR(m'^{(\cdot)B}, z_{o}^{(\cdot)B}))
8: m'^{(\cdot)B} = SecAND(m'^{(\cdot)B}, z_0^{(\cdot)B})
9: m'^{(\cdot)B} = SecAND(m'^{(\cdot)B}, z_{10}^{(\cdot)B})
10: m'^{(\cdot)B} = \operatorname{SecAND}(m'^{(\cdot)B}, \neg z_{11}^{(\cdot)B})
11: m'^{(\cdot)B} = SecXOR(m'^{(\cdot)B}, \neg z_{11}^{(\cdot)B})
12: return m'^{(\cdot)B}
```


Outline

- Introduction
 - ▶ Background
 - ▶ Motivation
- 2 Methodology
 - ► Fault Analysis
 - ► Attack Description
- S Fault Injection Analysis
- 4 Experiments
 - **▶** Simulation
 - ► Practical Attack
- 6 Results Analysis

Attacker model

- What can an attacker do?
 - 1 Perform encapsulation or trigger decapsulation as needed.
 - 2 Inject faults during decapsulation.
 - 3 Observe the session key to detect decapsulation failures.

Fault Analysis I

- Observation on masked decoding
 - \bigcirc Only $z_7 \dots z_{11}$ are involved.

$$\mathsf{Decode}^s(z) = \neg z_{11} \oplus \left(\neg z_{11} \cdot \neg (z_{10} \cdot z_9 \cdot (z_8 \oplus (\neg z_8 \cdot z_7)))\right)$$

- \square Analyze the result of bit flipping, using z_{10} as an example.
 - 1 If $z_{11} = 1$, the decoding result is fixed at 0, flipping z_{10} will not impact the decoding result.
 - 2 If $z_9 = 0$ or $(z_8 \oplus (\neg z_8 \cdot z_7)) = 0$, the decoding result is fixed at 0.
 - 3 Recursive analysis yields the following cases:

z_{10}	z_9	z_8	z_7 Interval of z		d
1	1	0	1	[1664, 2048)	0 \ 1
1	1	1	0	[1792, 2048)	$0 \rightarrow 1$
0	1	0	1	[640, 1024)	$1 \rightarrow 0$
0	1	1	0	[768, 1024)	$1 \rightarrow 0$

Fault Analysis II

- Interval Indication from Fault-Injected Decapsulation
 - 1 Analysis of all 5 bits:

Decapsulation Failure	Decapsulation Success
$ \begin{array}{c c} z_{11} & [0,1792) \cup [2048,3329) \\ z_{10} & [640,1024) \cup [1664,2048) \\ z_{9} & [1152,2048) \\ z_{8} & [1664,1792) \\ z_{7} & [1792,1920) \\ \end{array} $	$[1792, 2048)$ $[0, 640) \cup [1024, 1664)$ $[0, 1152)$ $[0, 1664) \cup [1792, 2048)$ $[0, 1792) \cup [1920, 2048)$

2 Can we make use of all this information?

Fault Analysis III

- Usability of interval information
 - \square A decoded coefficient can be expressed as $m * \lceil \frac{q}{2} \rfloor + \delta$.

- ☐ The probability of the coefficient falling within a certain range can be estimated from the distribution of noise.
- \square A decapsulation failure occurs after flipping z_8 , then $z \in [1664, 1792)$.
- \Box However, this event has a very low probability of $2^{-103.9}$.

Fault Analysis IV

- Only z_{10} is suitable as a target.
 - \Box If flipping z_{10} causes decapsulation failure:
 - **1** $z \in [640, 1024)$, with probability of $1 2^{-6.8}$ ($\approx 99.1\%$)
 - 2 $z \in [1664, 2048)$, with probability $2^{-39.8}$
 - $\ \square$ Set the target bit to 1 to ensure the decoded coefficient lies in [640,1024) when failure occurs, implying $\delta \in [-192,192)$.

Attack Description I

- The system of inequalities
 - 1 The decoded noisy polynomial

$$mp = v + \Delta v - (\mathbf{u} + \Delta \mathbf{u}) \circ \mathbf{s}$$

$$= \mathbf{t} \circ \mathbf{r} + e_2 + \Delta v - (\mathbf{A} \circ \mathbf{r} + \mathbf{e_1} + \Delta \mathbf{u}) \circ \mathbf{s} + m * \lceil q/2 \rfloor$$

$$= \mathbf{r} \circ \mathbf{e} - (\mathbf{e_1} + \Delta \mathbf{u}) \circ \mathbf{s} + e_2 + \Delta v + m * \lceil q/2 \rfloor.$$

$$= \delta + m * \lceil q/2 \rfloor$$

When $\delta \in [-192, 192)$, a decapsulation failure is observed, resulting in a **positive inequality**; otherwise, a **negative inequality**.

2 Repeat ω times to obtain a system of inequalities:

$$\mathbf{M}\mathbf{x} + \mathbf{b} = \begin{pmatrix} (\mathbf{r})_{(0)}, -(\mathbf{e}_1 + \Delta \mathbf{u})_{(0)} \\ \dots \\ (\mathbf{r})_{(\omega-1)}, -(\mathbf{e}_1 + \Delta \mathbf{u})_{(\omega-1)} \end{pmatrix} \begin{pmatrix} \mathbf{e} \\ \mathbf{s} \end{pmatrix} + e_2 + \Delta v \notin [-192, 192)$$

Attack Description II

- Solving systems of inequalities
 - 1 Initialize the distribution of secret coefficients:

$$\mathsf{Example:}\{-2:\frac{1}{16},-1:\frac{4}{16},0:\frac{6}{16},1:\frac{4}{16},2:\frac{1}{16}\}$$

2 Update the distribution using inequalities. The update rule for the k-th candidate of the j-th coefficient with the i-th inequality is:

$$P[i, j, k] =$$

$$Pr\left(-192 \le \mathbf{M}[i, j](k - \eta_1) + \left(\sum_{j' \in [0, \psi - 1] \setminus \{j\}} \mathbf{M}[i, j'] \circ \mathbf{x}[j']\right) + \mathbf{b}[i] < 192\right)$$

3 After all iterations, select candidates with the highest probabilities as predictions.

Attack Description III

Quick solver

Performance bottleneck: convolution operations

$$\mathbf{M}[i,j'] \circ \mathbf{x}[j']$$

- \square Approximate $\mathbf{M}\mathbf{x} + \mathbf{b}$ as a normal distribution X via the Central Limit Theorem, with mean μ and standard deviation σ .
- \square Convert X to standard normal distribution Z.

$$P[i, j, k] \approx Pr\left(\frac{-192 - \mu}{\sigma} \le Z < \frac{192 - \mu}{\sigma}\right)$$

Compute probabilities efficiently using the standard normal cumulative distribution function:

$$P[i, j, k] \approx F_{norm}(\frac{192 - \mu}{\sigma}) - F_{norm}(\frac{-192 - \mu}{\sigma})$$

Attack Description IV

■ Challenges in the Solving Process

- ① Since δ centers around zero, most candidate values cause decryption failure, making many inequalities weak in narrowing down the possibilities.
- 2 The collected inequalities are highly imbalanced (e.g., 99:1), which reduces the effectiveness of the solver.

■ Enhancing Attack Effectiveness via Inequality Filtering

- 1 Filter 1: Discard low-contribution inequalities offline by selecting ciphertext elements $(\Delta v + e_2)[i]$ near the boundary ± 192 .
- 2 Filter 2: Improve inequality balance by rejection sampling, discarding a proportion α of positive inequalities.

Outline

- Introduction
 - ▶ Background
 - ▶ Motivation
- 2 Methodology
 - ► Fault Analysis
 - ► Attack Description
- 3 Fault Injection Analysis
- 4 Experiments
 - **▶** Simulation
 - ► Practical Attack
- 6 Results Analysis

Fault Injection on Masked Implementation I

- Bit flipping via bit setting
 - floor In Boolean masking, **fixing** $z_{10}^{(i)}$ **to 0 or 1** can induce a bit flip in z_{10} with some probability.
 - **□** Repeat this process β times. If no failure occurs, then with probability $1 2^{-\beta}$, $z \notin [640, 1024)$; otherwise, $z \in [640, 1024)$. Only negative inequalities may incur errors under this strategy.

Peasible fault injection

Fault model	Injection Target
Bit-Flip	A2B Bitslice SecAND
Stuck-at 0/1	Load/Store
Instruction Skip	Bitslice

Fault Injection on Masked Implementation II

- Bit flipping via instruction skipping
 - In bit-sliced implementations, skipping an assignment instruction can effectively induce the desired fault:
 - 1 Instruction skipping \rightarrow Bit setting
 - Bit setting \rightarrow Bit flipping

Outline

- Introduction
 - ▶ Background
 - ▶ Motivation
- 2 Methodology
 - ► Fault Analysis
 - ► Attack Description
- 3 Fault Injection Analysis
- **4** Experiments
 - **▶** Simulation
 - ▶ Practical Attack
- 6 Results Analysis

Simulation Experiments

Assessment of key recovery and error tolerance

- 1 Recovering the secret key requires about 30, 000, 540, 000 and 240, 000 inequalities for Kyber512, Kyber768 and Kyber1024, respectively.
- 2 Error rates up to 30% are tolerable, causing only a moderate increase in required inequalities.

Figure: Solving filtered inequalities for all three security levels.

Figure: Solving filtered inequalities for Kyber1024 with $\alpha = 0.94$.

Figure: Solving corrupred inequalities for Kyber512.

Practical Attack Experiments

Experiment setup

- 1 Target: STM32F405 board with ARM Cortex-M4 core
- 2 Fault Injection: Instruction skipping via clock glitching
- 3 Firmware: Masked implementation based on [BGR+21]

Practical Attack Experiments

■ Fault Profiling

- 1 Fault injection parameters: offset, width, ext_offset, repeat.
- 2 Scan parameters to find optimal injection timing.

offset	width	ext_offset	repeat
[-20,20]	[1, 20]	[1, 50]	1

3 Scan (offset, width) pairs to minimize failed fault injections.

Practical Attack Experiments

Results

- 1 With the final fault injection parameters and $\beta=10$, we collect 50,000 inequalities, showing an error rate of about 6.2%.
- 2 Approximately 38,000 inequalities are needed to recover the full secret key, corresponding to 380,000 faulted decapsulations.

Outline

- Introduction
 - **▶** Background
 - ▶ Motivation
- 2 Methodology
 - ► Fault Analysis
 - ► Attack Description
- 3 Fault Injection Analysis
- 4 Experiments
 - **▶** Simulation
 - ▶ Practical Attack
- **5** Results Analysis

Comparison I

■ Comparison under perfect fault injection

- 1 This work explores risks introduced by the **non-linear components** in masking implementations.
- 2 The collected inequalities are more imbalanced, providing less information.
- 3 Consequently, a larger number of inequalities is required, especially for Kyber1024.

	Atatck Target	Type of Inequalities	Security Level	No. Inequalities
This work	Decoder	$\delta \ {\buildrel \in \over \notin} \ [-192,192)$	Kyber512 Kyber768 Kyber1024	36,000 54,000 4,000,000
[Del22]	Linear Parts	$\delta \stackrel{>}{_{\sim}} 0$	Kyber512 Kyber768 Kyber1024	8,500 9,400 12,000

Comparison II

- Comparison in practical attack
 - 1 Both attacks can be performed using clock glitching.
 - 2 Our method achieves higher reliability, resulting in a **higher success** rate with a smaller β .
 - 3 Overall cost is lower, except for Kyber1024.
 - 4 Unlike methods relying on manipulated ciphertexts (MC), our attack is harder to defend

	Security Level	No. Inequalities	β	Type of Faults	MC Req.
This work	Kyber512 Kyber768 Kyber1024	36,000 54,000 4,000,000	≥ 10	Clock glitch	×
[Del22]	Kyber512 Kyber768 Kyber1024	8,500 9,400 12,000	> 100	Clock glitch	V

Comparison III

■ Comprehensive Comparison

- 1 Both attacks target the masked decoder.
- Our method collects inequalities that provide tighter interval information, reducing the number of inequalities needed under perfect fault injection.
- 3 Our method requires a weaker fault injection, resulting in significantly fewer faulted decapsulations for comparable error rates.

	Type of Inequalities	Security Level	No. Inequalities	β	Type of Faults
		Kyber512	36,000		
This work	$\delta \in [-192, 192)$	Kyber768	54,000	≥ 10	Clock glitch
	¥ -	Kyber1024	4,000,000		
[KCS ⁺ 24]	$\delta \gtrapprox -192$	Kyber512	60,000	≥ 180	EM pulse

Reference

Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine van Vredendaal.

Masking Kyber: First- and higher-order implementations.

IACR TCHES, 2021(4):173-214, 2021.

https://tches.iacr.org/index.php/TCHES/article/view/9064.

Jeroen Delvaux.

Roulette: A diverse family of feasible fault attacks on masked Kyber. *IACR TCHES*, 2022(4):637–660, 2022.

Suparna Kundu, Siddhartha Chowdhury, Sayandeep Saha, Angshuman Karmakar, Debdeep Mukhopadhyay, and Ingrid Verbauwhede.

Carry your fault: A fault propagation attack on side-channel protected LWE-based KEM. *IACR TCHES*, 2024(2):844–869, 2024.

Peter Pessl and Lukas Prokop.

Fault attacks on CCA-secure lattice KEMs.

IACR TCHES, 2021(2):37-60, 2021.

https://tches.iacr.org/index.php/TCHES/article/view/8787.

Keita Xagawa, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi Homma.

Fault-injection attacks against NIST's post-quantum cryptography round 3 KEM candidates.

In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part II, volume 13091 of LNCS, pages 33–61. Springer, Cham, December 2021.

Thank you for your attention!

Email: wangjian2019@iscas.ac.cn

