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Symmetric key cryptography

Alice and Bob want to share a file

and share a secret key. ‘ } _). ].

Symmetric-Key Primitives Al'ce ) i B°b
® block ciphers, stream ciphers Eavesdropping
® hash functions
® message authentication code @
® authenticated encryption &

Charlie



Block-Cipher Cryptanalysis

E:{0,1}* x {0,1}" — {0,1}"
S e e ——

key plaintext ciphertext

® Secure block cipher: no way to distinguish it from a random permutation.

Cryptanalysis

® Recover the secret key

® Highlight unexpected behaviours



Ressources and Constraints

a Block Cipher
E:{0,1}* x {0,1}" — {0,1}"
i e i S——

key plaintext ciphertext

Adversarial Models
® known plaintexts

e Time: less than 2% encryptions ® (adaptively) chosen plaintexts
® Data: less than 2" plaintext/ciphertext ® (adaptively) chosen ciphertexts
pairs ® related keys, related subkeys

® side channels, faults injection



Security Margin

Plaintext

If no attack is found on a given cipher:
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Security Margin

If no attack is found on a given cipher:

e Study round-reduced
versions

® Study internal components

e Artificial?
® Attacks only get better
® Better safe than sorry!
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AES

S C+— MxC

AK SB SR X| |MC

X

XXX [ X

Wi_1 Xj Yi Zj 4

e Standardized in 2001 for 3 key lengths: 128, 192 and 256 bits
® Block size of 128 bits : 4 x 4 matrix of bytes
An AES round applies MC o SR o SB o AK to the state

No MixColumns in the last round



Known Cryptanalysis Techniques

e Differential cryptanalysis ® |nvariant attacks
® Linear cryptanalysis ® Meet-in-the-Middle attacks
® |ntegral distinguishers ® Algebraic attacks

Goals

® Find the best cryptanalysis technique against a particular target
® Apply the technique with optimal settings



Differential cryptanalysis

® Cryptanalysis technique introduced by Biham and Shamir in 1990.
® Based on the existence of a high-probability differential (J;,, do.¢).

o i r ronnds —e—— —— >
t — Rf+Rf—>-—R— Rz
4 4
Oin : : ('5"““,
\j \J
x + 0, R R pb— - - R R ()4 dour

® |f the probability of (J;,,d,,:) is (much) higher than 27", where n is the block size,
then we have a differential distinguisher.



Differential Cryptanalysis — Overview

Main idea:

1. Predict the effect of a plaintext difference AM = [ElM & & M* on the
ciphertext difference AC = &9 C ¢ & C* without knowing & K

2. Use prediction to recover the key



A Simple Toy Block Cipher
The block cipher Ej,«, (m) encrypts 4 bits of plaintext using two 4-bit keys:
¢ = Ein (M) = S(M D ko) ® ki
ko ki

l l

m-— & ©—C

x (01234 |5|6|7|8|9|a|b|c|d|e]|f

S-box
S(X)64c5072e1f3d8a9b

Given (mg, ¢co) = (a,9) and (my, ¢;) = (5, 6), what is the key?

Brute force (exhaustive search): try all 2% - 2% = 256 keys.



The Basic Idea

Assume we know two plaintext-ciphertext pairs (my, ¢o), (M1, ¢1):

Ko
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X
My—s @ — =2

Ko

vox
mi— @ 1

Even though we do not know ky and ki, we can derive

XO@Xl:(mo@k0)®(ml@ko):mo@ml
YoByi=(co®ki)B(c1®k)=coDy



Differential Attack (1-Round Toy Version)
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Compute xg & x;

Guess k; (iterate over all values)

Compute x; = S7(co @ ky) and x; = S7*(c1 & k)
Check ifxo & x1 = Xy D X}

If not: key guess was definitely wrong! (filtering)



Example for (mg, co) = (a,9) and (my, c1) = (5, 6)
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/ /
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1. Computex X3 =mMydm;=a@b==f

2. Guess k; and compute x; & xi:

ki |0|1|2|3|4|5|6|7 8|9|a|b|c

Xobx;|e|9]e|le|d|8|d|f f|d|8|d|e

3. Only two candidates for k; are valid: k; € {7,8}



Differential Cryptanalysis: Observations

t
Mo—» @ . hy @ i
An| Ko A,

\
mi— &P . i > @ —C1
What happened?

= We can getinformation about the differences, even though we do not know
the values

= We can make a guess for the (last) key and verify it by computing backwards



Let’s Extend it to a 2-Round Cipher

The block cipher Ey 4, 1, (M) encrypts 4 bits of plaintext using three 4-bit keys:

€ = E|lkyjlko (M) = S(S(M @ ko) & k1) @ ks

kO kl kp_
' ' '

We use the same 4-bit S-box S:

x (6|12 | 3|4|5|6|7T (8|9 alb|le|d|e]|Tf
S(x)|6|4|c|5]0|T7|2|e|1|f|3|d|8|a|9]|D

Brute force: 2474 = 4096 keys.



Differential Attack (2-Round Toy Version)

Ko
v
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& We can again deduce Ax = Am = my & my
€ We can again guess k, to compute a candidate Ay’

& Can we get more information on the real Ay using only Ax, but not xq., x;?



The Influence of the S-Box: Example for Input Difference Ax = £

Xo | X1= | Yo= | V1= Ay =
XoBf | Sxo) | Sa) | Yo n

0 £ 6 b d

1 e 4 9 d

2 d c a 6

3 c 5 8 d

4 b 0 d d

5 a 7 3 4

6 9 2 £ d

7 8 e 1 §

8 7 1 e £

9 6 £ 2 d

a 5 3 7 4

b 4 d 0 d

¢ 3 8 5 d

d 2 a c 6

e 1 9 4 d

f 0 b 6 d

= Only 4 differences for Ay are
possible for Ax = f£.

One difference, Ay = d, occurs
very often (10 of 16 times)

Let’s assume Ay = (Ay’' =) d
> Correct with prob. 10/16

> Verify our guess k’, by checking
whether Ay’ =d



Differential Attack (2-Round Toy Version)

ko kl k2

v \/ v
mgﬁ@% Yo ) 20 =EL@_>CO

Ko IAX AyI IA;/ ki ks
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1. Consider 16 plaintext-ciphertext pairs (mj, c;) and (m}, ¢|) such that
mi & m, = A, =fforalli=0,...,15

7

2. Guessthe last round key k, (iterate over all values)

3. Foreach plaintext-ciphertext pair: compute wy, wi, z;, z; and count the
number of pairs for which Ay’ = AZ' = q;

4. Forthe right key, approx. 16 - % — 10 pairs satisfy Ay’ = d;
for a wrong key, approx. 16 - % — 1 pair satisfies Ay’ = d (why? really?)



Difference Distribution Table (DDT)

How can we find differences with a good probability?

= compute all possible output differences for all input differences of an S-box

= orequivalently: compute the number of solutions x to the equation

S(x @ Ax) ® S(x) = Ay

Let f be an n-bit to m-bit function. The difference distribution table of f is a

2" x 2™ table whose entries are the number of valid solutions x for each
differential Ax — Ay.



Difference Distribution Table (DDT)

Ax\ Ay | 0 2 3 4 5 7 8 9 a b d e f
0 16 - = = = = = = = = - -
1 . B =& = = B = B = = N 4 -
2 - B = = = s = B P - . - -
3 s - 6 - 2 7 = = N 2 -
4 - . B - 2 - - 22 2 N 2 -
5 : 2 = & = 2 2 - = 2 - - -
6 - F - @ - 3 2 - 2 2 -

7 - - = = W - 22 2 2 . - -
8 s s = = 2 7 4 = = 4@ N - 2
9 - - = = P g -~ & B - N - 2
a - « = B P ~ e B B = N - -
b : s B3 e 2 2 = = & N 2 -
c - . 2 - 2 - B - - e -
d : s & = m B = =i o= e o - 4
e . . 4 3 - s = W B - - 6
£ - S L ]




Maximum Differential Probability

The Differential Probability (DP) of the function f is defined as
DP:(Ax — Ay) := P[f(x & Ax) & f(x) = Ay]
 {x e F | f(x ® Ax) @ f(x) = Ay}
— =

The Maximum Differential Probability (MDP) is defined as

MDPy := Ag]ég,XAy DPf(AX — Ay)

In the previous example:

MDPs = max H{x e F) | S(x & Ax) & S(x) = Ay} _ 10
Ax£0.Ay 16 T




Basic Approach of a Differential Attack

Ko— A
T 8 1. Find a “good” differential characteristic
P1
Ao = Al — Az — Ag
Kl —D Al E
>
P, 1 2. Guess final key K, and compute backward through the
> S-boxes to determine Al
K, —b A, F
o, 3. Theright key satisfies A; = Az with prob. P(Ay — As);
a wrong key satisfies A} = As with prob. 1/2" = 27"
Ks—d As (for n-bit block size)
Z 4. Necessary condition for the attack to work:
K
4—{,9 = P(AQ ~— Ag) > 27




Diff. Probability for Multiple Rounds - A 4-Round Toy-Cipher

X
S(x)|6|4|c|5|0|7|2|e|1|f|3|d|8|a|9]|D

> Consider the input difference (0 0 2 0) and the DDT:

AX\Ay0123456789abcdef
§ |IB - = = = = = == = + & = = e =
1 T R EEE R T R
2 s B = = =8 s 5 R Pe 5 o= e
Ky 2 This 1-round characteristic holds with prob. 1 - % « 3

S| s|s]is
Ks 3349930 heetvies (0020)— (00 20)

24/ 38



Characteristic and Differential

This 1-round characteristic for ToyCipher holds with probability 6/16:
(0020)—(0020)

This 4-round characteristic for ToyCipher holds with probability (6/16)* = 4096:

(0020)=(0020)—=(0020)—=(0020)—(0020)

324 .
4096°

This 4-round differential for ToyCipher holds with a higher probability of
(0020 —=?—>7—7—(0020)



How to find the best differential attack?

Main Problems:

® Very large search space — impossible to exhaust

® How to find small enough subspaces containing optimal solutions?
® How to use our intuition?

® Evaluating objectives might be an hard task

® Computing entropy of round key bits
® Computing probability of transitions
® Rank problems

® Use the right tools and jmodelizations:

® Dedicated algorithms
® Generic solvers: CP, SAT/SMT, MILP



How to find the best differential attack?

Main Problems:

® Very large search space — impossible to exhaust

® How to find small enough subspaces containing optimal solutions?
® How to use our intuition?

® Evaluating objectives might be an hard task

® Computing entropy of round key bits
® Computing probability of transitions

® Rank problems
Let first focus on finding

® Use the right tools and modelizations: good distinguishers!

® Dedicated algorithms
® Generic solvers: CP, SAT/SMT, MILP



ai az as ar ari1

X+al+. T >Fy+ar+l

T : ; 1
Distinguisher: differential (a1, a,.1) such that Iir[Fk(x) + Fiu(x + a1) = ar1] > -

Distinguisher probability estimation: characteristic (a1, as, ..., a,+1) such that

r

; . 1

Iir[Fk(x) - Fk(x - al) =t a,+1] i F)’(r[/\ F/((X,') -+ F/((X,' = a,-) — a,-+1] > 57'
=1

with x;41 = Fi(x;) and x; uniform.



Classical Assumptions

Stochastic Equivalence Hypothesis

Iir[/\ Fi(x;) + Fi(x; + aj) = aj1] = |’C| Z Pr[/\ Fi(x;) + Fi(x; + a;) = aj1]
i=1 kek = i=1

N — _

Fixed-key probability Expected Differential Probability (EDP)

Round Independence

EDPlay,...,ar41] & H Pr [Fk x;) + Fi(xi + a;) = ajt1]

xn
=il

with x;, k uniform.
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Finding the best differential:
® Pick a key k (since the probability is independent of the key)

® [nit Nto O
® For each of the 2" possible values of a;

® |nit a table T of size 2" to 0
® For each of the 2" possible values of x

* TIFk(x)® Fu(x® a1)]+ =1
® |f N strictly lower than max(T) then update N

Basically, we computed the DDT for a particular value of k (and we did not fully store it)
Complexity: O(22") in time and O(2") in memory
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Finding "all" differentials with probability > p (heuristic):
® Pick a key k (since the probability is independent of the key)

® For each of the 2" possible values of a;

® Init a hash table T
® For O(p~1!) random possible values of x

® Add Fi(x)® Fi(x @D a1) to T
® Qutput a; — a,41 for all a,;1 € T appearing at least twice

Complexity: O(2"/p) in time and O(1/p) in memory



Finding "all” differentials with probability > p (heuristic): EC23: Efficient Detection of High
Probability Statistical Properties of

® Define GI?(X) = Fi(x) ® Fr(x @ o) Cryptosystems via Surrogate
® Pick a random key k, a random « and init a hash table T bifferentiation
® For N random possible values of x
® For each x’ € T [GX(x)]
® 2, =x®x" and ary1 = Fe(x) & Fi(x")
® Output (a1, ar41)

® Add x to T [G(x)] I

x [ 77 Ff y

Here we are looking for collisions on G*(x) because if all %2 ‘33 ‘a, laﬂ
Fi(x) © Fr(x ® a) = Fi(x") ® Fx(X" ® ) then xta—{0E R ...

Fk(X) D Fk(X/) = Fk(X D a) D Fk(X/ D a)

The two pairs (x,x") and (x ® «a, x’ @ «) follow the same differential!

Given a random pair of pairs ((x,x'),(x ® a,x’ ® «a))
® the probability that both pairs follow the differential is p?
® we need O(2"/p?) pair of pairs to detect a collision

[Complexity: 0(2"/2/p) in time and memory]




Classical Assumptions

Stochastic Equivalence Hypothesis

Iir[/\ FL(X,') -+ FL(X,‘ + a;) = aj11]
—1

|’C| Z Pr[/\ Fi(x;) + Fi(x; + a;) = aj41]
kek i=1

— N _

Fixed-key probability Expected Differential Probability (EDP)

Round Independence

EDPlay,...,ar41] & H Pr [Fk x;) + Fi(xi + a;) = ajt1]
I 1 l7

with x;, k uniform.



Classical Assumptions

Stochastic Equivalence Hypothesis

Iir[/\ Fi(x;) + Fi(x; + aj) = aj1] = |’C| Z Pr[/\ Fi(x;) + Fi(x; + a;) = aj1]
i=1 kek = i=1

N — _

Fixed-key probability Expected Differential Probability (EDP)

Round Independence

EDPlay,...,arp1| & H Pr [Fk xi) + Fi(xi + ai) = ai]

xi,k

with x;, k uniform.
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Using round independence assumption, an optimal differential characteristic on r rounds
is composed of

® 3 difference a,
® an optimal differential characteristic on r — 1 rounds, ending by a,

® a difference a,;1 such that the transition a, — a,41 is optimal on one round

ar+1

opt, = max,,,, optr
opt;™! = max,, opt’ x Pr(a; = aj41), for 1 <i<r

Complexity: 0O(22") in time and O(2") in memory



Dynamic Programming

a step-function a step-function a step-function
X X
X X =
X X /
X > X / / > X
X \ X 7\




Dynamic Programming

a step-function a step-function a step-function

All differences



Dynamic Programming

X X
X\X
X\X
X > X

X X
X\X
X X
X X
X X



Dynamic Programming

\ 1 \)
X X X X |4 | #min

Best
characteristic has
X X X probability 24




Dynamic Programming

X X
X X
X X
X X




Dynamic Programming

X X
X X
X X
X X




foreach state s do M [s] «— list of states s’ reachable from s through one round
foreach state s do C[0][s] +— 1
for1<r< R do
foreach state s do C [r][s] «+— O
foreach state s do
foreach state s’ € M [s]| do
c<+— Clr—1][s] x Pr(s = §')
if c > C|[r][s'] then C[r][s'] +— ¢
end
end
end
return C




foreach state s do M [s] «— list of states s’ reachable from s through one round
foreach state s do C[0][s] +— 1

for1<r< R do

foreach state s do C [r][s] «+— O

foreach state s dc Need to minimize!
foreach(state s’ € M [s]| do
r= )

C+— < Pr(s — ¢
if c > C|[r][s'] then C[r][s'] +— ¢

end
end
end

return C




Assume on|average 2"/~ reachable differences for S whatever the input difference

e Around 27/2=1 % 2n/2=1 — 2n=2 reqchable differences e Around 27/2-1 1 = 27/2-1 reachable differences

If one round is composed of n/m m-bit S-boxes, then time complexity is O(n/m x 2"t™)



Differential Distinguisher

to £ tg = Ay
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Differential Distinguisher
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Differential Distinguisher

to EB t(/) = Ag
} }
Ei o0 Ep Ei0 Eg
{ {
t @ té = Ay

Still very hard!

to @t
} }
Eo Eo
! !
t1 &5 ty
} }
W Eq
| v
th P 4



foreach state s5do M [s] «— list of states s" reachable from s through one round
ich state s-do C [0] [s] «— 1

for1<r< R do

oreach state do C [r[{s]«— 0
oreach state s>do

foreach state s’ € M [s]| do

c+— C[r—1][s] x Pr(s = &)
if c > C|[r][s'] then C[r][s'] +— ¢

Can we minimize this ?

end
end
end

return C
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® Binary variables abstracting the presence/absence of non-zero differences
® 4 active Sboxes — upper bound on the probability of differential characteristics

e XOR: two non-zero values can lead to the presence or the absence of a difference



“““““ T
Truncated Differential Characteristics on SKINNY

I (Switemows ) (WixCotemns )
_EEEIN EEEIGT e
b L ¢
i sc B N AC &
B = &

® Binary variables abstracting the presence/absence of non-zero differences
® 4 active Sboxes — upper bound on the probability of differential characteristics

e XOR: two non-zero values can lead to the presence or the absence of a difference
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® Binary variables abstracting the presence/absence of non-zero differences

o
P
D
AN %

fan)

De
€

® 4 active Sboxes — upper bound on the probability of differential characteristics

e XOR: two non-zero values can lead to the presence or the absence of a difference



Search for Minimal Truncated Characteristics

foreach state s do M [s] <— list of states s’ reachable from s through one round
foreach state s do C[0][s] «— number of active cells of s
for1<r<Rdo
foreach state s do C [r][s] +—
foreach state s do
foreach state s’ € M[s] do
c «— C[r—1][s] + number of active cells of s’
if c < C[r][s'] then C[r][s'] «+— ¢
end

end e Dynamic programming
end e Complexity: (R — 1) x 220
return C



Differences in the key

foreach state s, key k do M [s, k] «<— list of (s’, k’) reachable from (s, k)
foreach state s, key k do C[0] [s, k] +— number of active cells of s
for1<r<Rdo
foreach state s, key k do C|r][s, k] +— oo
foreach state s, key k do
foreach (s', k') € M s, k] do
c «— C|[r —1][s, k] + number of active cells of s’
if c < C[r][s/, k'] then C|[r][s', k'] +— ¢
end
end
end e Problem: # (s, k) = 2° in the TK3 model
return C e Can be reduced to 2*® — still unpractical




Early Abort Technique

® Conjecture: Optimal truncated characteristics have few active key cells

® |Idea: Build a binary search tree on active cells of the key

® At step /, decide whether cell i of the master key is active or not
® Run a degraded search for minimal number of active Sboxes
® Cut branches which cannot reach the current bound

N
N

SC

D: unset key cell




Early Abort Technique

® Conjecture: Optimal truncated characteristics have few active key cells

® |Idea: Build a binary search tree on active cells of the key

® At step /, decide whether cell i of the master key is active or not

® Run a degraded search for minimal number of active Sboxes

® Cut branches which cannot reach the current bound

0/1

0/1

0/1

SC

1N

N

D: unset key cell



AES

S C+— MxC

AK SB SR X| |MC

X

XXX [ X

Wi_1 Xj Yi Zj 4

e Standardized in 2001 for 3 key lengths: 128, 192 and 256 bits
® Block size of 128 bits : 4 x 4 matrix of bytes
An AES round applies MC o SR o SB o AK to the state

No MixColumns in the last round



AES Key-Schedules

& [5H
—HSH 5 2
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(a) AES-128 (b) AES-192 (c) AES-256



C

If the state size is still too big then compressiit ...

ompress more

Truncated difference

K| 128 192 256
# 232 240X 248X

.. but this comes at the price of:

more complicated transition rules
more invalid configurations

»

Compressed difference

K|

128

192

256

#

218.58

223.22

227.86




Example: AES

Basic propagation rules ...

I

I SR>

1

XOR of two bytes
| @ >-
| @ | ; { |

P BE

MC
—

... do not necessarily lead to valid truncated trails.

Ex: I KS>.—>

=

1i BN )



Example of linear incompatibility in the case of AES-128

The linearity of the KS imposes all the active columns [a, b, ¢, d] "
to be equal, which contradicts the first key addition (AK)
M- [x,0,0,0]T & [x,0,0,0]T =M-[y,0,0,0]* ©[0,y’,0,0]" .

KS

“E . m M SB Y l
MC AK SR MC AK

Linear equations ~s Detect inconsistencies of the form Wl = Z []



Main process

Searching for the best differential characteristic:
1. Search for the best truncated/compressed characteristic <— upper-bound
2. Look for structural inconsistencies, if any go back to 1
3. Find the best instanciation and save it <— lower-bound
4

. If upper-bound # lower-bound, go back to 1



Generic Solvers

MILP

&ld Constraints: Linear
2 Variables: Integer/real

© Optimize a linear
objective

SAT/SMT

&6 Constraints: CNF
QY Variables: Boolean

© Find a satisfiable
assignment

P
&ld Constraints: Various

Q2 Variables: Integer, set,. ..

© Find a satisfiable assignment or
optimize an objective



Mixed-Integer Linear Programming (MILP)

Objectif c1z1 4+ -+ ez, c.x

Constraints aj 121+ -+ a1 ,xn < by
a1c1 + -+ + 2%y < b2 A-z<b

Am,1L1 i i Am nTn S bm

Domain LYy s vnyBY E Loy  Biidne - By ER
Loy > womsn; B ' E {0,1}

@ Objective function and all constraints are linear.
@ Some variables are integers, some variables are continuous.

@ Typically in our applications, almost all variables are Boolean.



MIP Solution Framework

Solve LP relaxation:

v=3.5 (fractional)

Remarks:
(1) GAP =0 = Proof of optimality
(2) In practice: Often good enough to have good Solution



First use of MILP in Cryptography

In 2011, Mouha et al. and Wu and Wang proposed to use MILP for finding
the minimum number of differentially and linearly active Sboxes.

Example AES

To &ry4 T8 T12 216 | o0 | @04 | 208
el [ [l e R @7 | @oy | @a5 | @29 R

X re rio| T14 15| 2 e | 20|
x3 | Ty | 11| 15 ZTig | Ta3| zo7| 231

Define 167 variables z; € {0,1}:
@ z; = 1 has a non-zero difference (active)

@ z; = 0 is (inactive)
Write propagation rules as linear inequalities.

Objective function: Minimize > z;.



Application to AES

S C+ MxC

AK SB. SR, X| |mc

XXX X

Wr—1 Xr Yr Zyr Wy

* x[i] = yrli]



Application to AES

S C+—~ MxC

XX [X|X

Wr_1 Xr Yr “r We

 x.[i] =y, y/li] = z/[SR[/]]



Application to AES

S CeMxC

=L SB SR X| |Mmc

X[ X[ XX

Wr_1 Xr Yr Zp w,

* x[i] = y.li] , y[i] = z[SR[i]]
® > icczlil+wli]=00r >5



Application to AES

S C+— MxC

AK SB SR X[ |[MC

X[ X[ XX

Wr—_1 Xr Yr Zyr Wy

* x[i] = y:lil , y:[i] = z/[SR[i]]
® > icczlil+wli]=0o0r >5
® [ntroduce an extra binary variable e

>z il + wli] > 5eand Y z[i] + w,[i] < 8e

ieC ec



Application to AES

S C+— MxC

AK SB SR, X| |Mmc

XXX X

Wr—1 Xr Yr Zy Wy

® No difference in key: w,_1[i] = x,[/]



Application to AES

S C+— MxC
\ 4 X x
AK SB. X|SR X| Mc
X X
X X
Wr—1 Xr Yr Zr s
® No difference in key: w,_1[i] = x,[/]
¢ Difference in key: w,_1[i] + k:[i] + x/[/] # 1
1 —wea[il+ kJi] +x[] > 1
we_1[i] +1— kJi] + x[i] > 1
we_1[i] + k[l +1—x[i] > 1



Bitwise vs Wordwise

Wordwise model

@ One variable per word of the state (byte or nibble)

@ The properties of the Sbox do not influence the propagation (only
activeness counts)

@ Only the branch number of the linear layer counts.
@ Few variables, small system of inequalities

@ Not that precise.

Bitwise model

@ Binary variables are assigned to each bit of the state.

@ Propagation through linear layer becomes precise and simple to write
down. However, too many inequalities may be needed.

@ Propagation rules through Sbox complicated.



Comparison of Tools

R MILP MiniZinc/SAT Ad-Hoc Choco

SK TK1 TK2 TK3 | SK TK1 TK2 TK3 | SK TK1 TK2 TK3 SK TK1 TK2 TK3
7 1s 1s 1s 1s 17s 8s 1s 1s 1s 21s 22s 22s Ts Ts 1s 1s
8 1s 1s 1s 1s 140s Ts 4s 2s 1s 22s 31s 23s Ts 8s 3s 1s
9 2s 2s 2s 2s 57s 11s Ts 1s 1s 22s 24s 26s 8s Os Ts 1s
10 Ts bs 3s 2s 97s 46s 15s 10s 1s 22s 24s 27s Os 60s 55s 2s
11 8s 11s 4s 3s 312s 29m 22s 24s 1s 23s 2bs 32s 23s 188m 86s 34s
12 13s 35s 7s 3s 468s > 24h  113s 35s 1s 24s 27s 25s 75s > 24h  43m 288s
13 Os 53s 17s 6s 14m 14m 104s 1s 24s 30s 27s 249s > 24h  56m
14 23s 93s 27s 8s 491s 72m 148s 1s 24s 39s 28s 10m > 24h
15 69s 245s  75s 21s 27m > 24h  157m 1s 25s 46s 34s 85m
16 12m 423s 148s 39s | 128m 251m 1s 25s 57s 38s | > 24h
17 || 46m 22m 213s 53s | 106m > 24h | 1s 27s 59s 48s
18 || 178m 31m 53bs 64s | 403m 1s 27s 76s 73s
19 || 529m 56m 29m 218s | 436m 1s 28s 110s 283s
20 16h 87m 33m 340s | 174m 1s 28s  193s 326s




Algorithm R Min nb # char. CP [RGMS22] MILP Dynam. Prog.
of active Time Real Time Real Time
S-boxes (User Time) (User Time)
3 5 2 13s 1s (1s) 1s (1s)
AES-128 4 12 31s 9s (36s) 1s (1s)
5 17 81 2h24m 26s (2m22s) 40s (5m6s)
3 1 14 1s 1s (1s) 1s (2s)
4 4 3 6s 2s (3s) 1s (4s)
AES-192 5 5 2 8s 1s (3s) 1s (5s)
6 10 3 17s 10s (34s) 1s (8s)
7 14 46s im (4m26s) 1s (9s)
8 18 1m23s 1m38s (8m3s) 1m3 7s)
9 24 30m 5m33s (35m18s) 4d5h (20d4h)
3 1 33 1s 1s (1s) 8s (46s)
4 3 10 3s 1s (1s) 12s (1m10s)
5 3 4 5s 1s (2s) 16s (1m39s)
6 5 3 13s 3s (bs) 19s (1m57s)
{f 5 1 18s 3s (56s) 23s (2m21s)
AES-256 8 10 2 32s 8s (24s) 29s (3mis)
9 15 8 5m46s 23s (1m31s) 32s (3m24s)
10 16 4 2m39s 2m19s (8m59s) 34s (3m31s)
11 20 4 5m30s 3m20s (15m35s) 42s (4m30s)
12 20 4 4n37s 6m31s (37m24s) 42s (4m16s)
13 24 4 m 23 58s) 52s ( 5m24s)
14 24 4 9m17s 32m27s (124m28s) 50s (5m5s)

® Use the right tools and modelizations:

® Dedicated algorithms
® Generic solvers: CP, SAT/SMT, MILP



Key-recovery attacks
A differential distinguisher can be used to mount a key recovery attack.

* This technique broke many of the cryptosystems of the 70s-80s, e.g. DES, FEAL,
Snefru, Khafre, REDOC-II, LOKI, etc.

* New primitives should come with arguments of resistance by design against this
technique.

* Most of the arguments used rely on showing that differential distinguishers of high
probability do not exist after a certain number of rounds.

* Not always enough: A deep understanding of how the key recovery works is necessary
to claim resistance against these attacks.



Overview of the key recovery procedure

- — — > - —————————— - - — — >
I'in rs Tout
Din . {)in ()nu! . Dnul
K e t
- —_———— - - —— e —————— - e —— -
1 AR 1

First step: Construct 2P*%n plaintext pairs (with dj, =10g,(Din)).

e 2° structures ———-—»

e Use 2% plaintext structures of size 2%n
= 22din=1 pajrs from a structure.

o As 25t24in=1 _ optdin —s 5= p—d;, +1 structures.

Data complexity: 2P*1, Memory complexity: 2%n



Not all pairs are useful

Idea: Discard pairs that will not follow the differential.

* Keep only those plaintext pairs for which the difference of the corresponding output
pairs belongs to Dy,;.

e Order the list of structures with respect to the values of the non-active bits in the
ciphertext.

Plaintext
structure Ciphertext

order by ciphertext value
T~ Encryption oracle

active -

Number of pairs for the attack

active

N = 2p+din_(n_dout) )

non-active




Alternative 1: Early key-guessing

o B [ 2" plaintexts }
k, k

AK 0Ky [22"'—1 pair.sﬂ : o zn+2 :
S ® 1}

Ay 0011 [ T = 22n-1+2_ 22n+1] 22n-3 pair.s:

O: Generate pairs
®: Guess 2-bit key

» lower time complexity v

» reduce the number of pairs 4



Alternative 2: Differential-MitM attacks

I'in

'm

T out

A

P P
Ein
o O
Em
P
FEout
G C

Procedure:

E.

2
3.
4 4
| 9=p
|
'
Pro:
/‘.(')llf
Con:

Ask for one plaintext/ciphertext pair (P, C)

. Construct the set of the |k;,| possible plaintexts P

Construct the set of the | k.| possible ciphertexts C

. Search for valid (P’, C') € P x C by looking for a

collision

® Much easier to deal with the key
® Specific improvement for ciphers with partial
key addition

® More memory than for classical differential
attacks



Goal of the key recovery

Determine the pairs for which there exists an associated key that leads to the differential.

A candidate is a triplet (P, P, k), i.e. a pair (P,P') and a (partial) key k that
encrypts/decrypts the pair to the differential.
What is the complexity of this procedure?

e Upper bound: min(2¥, N - 2/KinUKouly

where « is the bit-size of the secret key.

* Lower bound: N+ N -2/KinUKourl=din=dous
where N - 2/KinUKout|=din=dout 5 the number of expected candidates.



Goal of the key recovery

Goal

Determine the pairs for which there exists an associated key that leads to the differential.

A candidate is a triplet (P, P, k), i.e. a pair (P,P') and a (partial) key k that
encrypts/decrypts the pair to the differential.
What is the complexity of this procedure?

e Upper bound: min(2¥, N - 2/KinUKouly
where « is the bit-size of the secret key. 2 cases.
1) Filter

e LOWGI’ bound N N.2|I<inu-[<)ut|_din—dout 2) Rank
where N - 2/KinUKout|=din=8owr5The number of expected candidates.




Which one is the right key?

Distinguishing between two binomial probabilities requires around:

(Za/2\/pl(1 — p1) + 23/ P2(1 — Pz))2
(p1 — p2)?

~~
~

samples

where z, /5 and z3 are constants related to the probability of success.



Which one is the right key?

Let replace p; by p and po by p + €

(22 =P + 2P F A - 1))
2

€

~
~J

samples

In typical situations, both p and p + ¢ < 1 and thus N =~ samples

(Za/2+23)2p
2

In many attacks, both p + ¢ ~ 1/2" < p and thus

(Za/2 + 2,3)2
p

N =~ samples



11 11 11 1
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5|9 [11|®) 5|9 [11|®) 5| 9 [11/(®) 9 [11|®) 5
K
9 [11]®)| 5 9[11|[@[s5] * [6]w0]1]2 6[10[1]2
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6(10/1]2 5C\61012£1111 SR 11]1]1]1
BENERE e 1|1]1]1 M EIEN
1{1]1]1 1[1]1]1 WEIENE 1[1|1]1

Early abort technique
Rebound-like procedure

Knowing both input/output
differences around an Sbox
leads to the actual values

Might be very complex
depending on the key schedule
and the cipher



Summary

- Searching for good differentials is hard

- Searching for good characteristics is easy
- in some situations only!
- look at the quasidifferential framework for more advanced estimations
- many designs are still hard to analyze

- Searching for the best differential attacks is hard

- the best differential distinguisher does not necessary lead to the best attack
- look at key absorption for more advanced key recovery processes

Thank you for your attention!



