Number of Qubits in Quantum Factoring

SAC 2025

Pierre-Alain Fouque

Université de Rennes

Contents

- 1. Introduction to Quantum Computation
- 2. Basic Circuits: Deutsch-Jozsa and Simon algorithms
- 3. Shor algorithm
- 4. Other quantum factorisation algorithms

In 1978, Rivest, Shamir, and Adleman described the RSA cryptosystem whose security is related to the untractability of factoring

Factorization Problem

Given an integer N = pq, where p and q are two primes. Recover p?

In 1978, Rivest, Shamir, and Adleman described the RSA cryptosystem whose security is related to the untractability of factoring

Factorization Problem

Given an integer N = pq, where p and q are two primes. Recover p?

Classical algorithm:

- Number Field Sieve (NFS). Complexity: $2^{\tilde{O}(n^{1/3})}$ (constants matter...) where n is the size of N: $n = \log_2(N)$
- Record: 250-digits (830 bits): 2700 computer years
- $\approx 2^{128}$ for a 2048-bit modulus

Discrete Logarithm

Let p a prime and q a prime divisor of p-1, and g a generator of the q-order subgroup of $(\mathbb{Z}/p\mathbb{Z})^*$. Given $y=g^x \mod p$, recover x?

Discrete Logarithm

Let p a prime and q a prime divisor of p-1, and g a generator of the q-order subgroup of $(\mathbb{Z}/p\mathbb{Z})^*$. Given $y=g^x \mod p$, recover x?

Example: g = 2 in $(\mathbb{Z}/11\mathbb{Z})^*$

Discrete Logarithm

Let p a prime and q a prime divisor of p-1, and g a generator of the q-order subgroup of $(\mathbb{Z}/p\mathbb{Z})^*$. Given $y=g^x \mod p$, recover x?

Example: g = 2 in $(\mathbb{Z}/11\mathbb{Z})^*$

• $2^0 = 1, 2^1 = 2, 2^2 = 4, 2^3 = 8, 2^4 = 5 \mod 11, 2^5 = 10 \mod 11, 2^6 = 9 \mod 11, 2^7 = 7 \mod 11, 2^8 = 3 \mod 11, 2^9 = 6 \mod 11, 2^{10} = 1 \mod 11...$

3

Discrete Logarithm

Let p a prime and q a prime divisor of p-1, and g a generator of the q-order subgroup of $(\mathbb{Z}/p\mathbb{Z})^*$. Given $y=g^x \mod p$, recover x?

Example: g = 2 in $(\mathbb{Z}/11\mathbb{Z})^*$

- $2^0 = 1, 2^1 = 2, 2^2 = 4, 2^3 = 8, 2^4 = 5 \mod 11, 2^5 = 10 \mod 11, 2^6 = 9 \mod 11, 2^7 = 7 \mod 11, 2^8 = 3 \mod 11, 2^9 = 6 \mod 11, 2^{10} = 1 \mod 11...$
- What is the subgroup generated by 4 ? generated by 10 ?

Discrete Logarithm

Let p a prime and q a prime divisor of p-1, and g a generator of the q-order subgroup of $(\mathbb{Z}/p\mathbb{Z})^*$. Given $y=g^x \mod p$, recover x?

Example: g = 2 in $(\mathbb{Z}/11\mathbb{Z})^*$

- $2^0 = 1, 2^1 = 2, 2^2 = 4, 2^3 = 8, 2^4 = 5 \mod 11, 2^5 = 10 \mod 11, 2^6 = 9 \mod 11, 2^7 = 7 \mod 11, 2^8 = 3 \mod 11, 2^9 = 6 \mod 11, 2^{10} = 1 \mod 11...$
- What is the subgroup generated by 4 ? generated by 10 ?
- As $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic, for all d|p-1, there is a subgroup of order d

Discrete Logarithm

Let p a prime and q a prime divisor of p-1, and g a generator of the q-order subgroup of $(\mathbb{Z}/p\mathbb{Z})^*$. Given $y=g^x \mod p$, recover x?

Example: g = 2 in $(\mathbb{Z}/11\mathbb{Z})^*$

- $2^0 = 1, 2^1 = 2, 2^2 = 4, 2^3 = 8, 2^4 = 5 \mod 11, 2^5 = 10 \mod 11, 2^6 = 9 \mod 11, 2^7 = 7 \mod 11, 2^8 = 3 \mod 11, 2^9 = 6 \mod 11, 2^{10} = 1 \mod 11...$
- What is the subgroup generated by 4 ? generated by 10 ?
- ullet As $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic, for all d|p-1, there is a subgroup of order d

Complexity and Security level

• Classical algorithms: Pollard \sqrt{q} and NFS: $2^{\tilde{O}((\log_2 p)^{1/3})}$

Discrete Logarithm

Let p a prime and q a prime divisor of p-1, and g a generator of the q-order subgroup of $(\mathbb{Z}/p\mathbb{Z})^*$. Given $y=g^x \mod p$, recover x?

Example: g = 2 in $(\mathbb{Z}/11\mathbb{Z})^*$

- $2^0 = 1, 2^1 = 2, 2^2 = 4, 2^3 = 8, 2^4 = 5 \mod 11, 2^5 = 10 \mod 11, 2^6 = 9 \mod 11, 2^7 = 7 \mod 11, 2^8 = 3 \mod 11, 2^9 = 6 \mod 11, 2^{10} = 1 \mod 11...$
- What is the subgroup generated by 4? generated by 10?
- ullet As $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic, for all d|p-1, there is a subgroup of order d

Complexity and Security level

- Classical algorithms: Pollard \sqrt{q} and NFS: $2^{\tilde{O}((\log_2 p)^{1/3})}$
- p a 2048-bit prime and q a 256-bit prime

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer*

Peter W. Shor[†]

Breakthrough

• Polynomial-time algorithm $O(n^2)$ gates and O(n) qubits

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer*

Peter W. Shor[†]

- Polynomial-time algorithm $O(n^2)$ gates and O(n) qubits
- If we were able to built a noise-free quantum algorithm, we will be able to break all communications...

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer*

Peter W. Shor[†]

- Polynomial-time algorithm $O(n^2)$ gates and O(n) qubits
- If we were able to built a noise-free quantum algorithm, we will be able to break all communications...
- Post-Quantum Cryptography: classical algorithms where hard problems are conjectured to resist quantum computers ...

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer*

Peter W. Shor[†]

- Polynomial-time algorithm $O(n^2)$ gates and O(n) qubits
- If we were able to built a noise-free quantum algorithm, we will be able to break all communications...
- Post-Quantum Cryptography: classical algorithms where hard problems are conjectured to resist quantum computers ...
- E.g.: hard lattice problems, coding problems, ...

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer*

Peter W. Shor[†]

- Polynomial-time algorithm $O(n^2)$ gates and O(n) qubits
- If we were able to built a noise-free quantum algorithm, we will be able to break all communications...
- Post-Quantum Cryptography: classical algorithms where hard problems are conjectured to resist quantum computers ...
- E.g.: hard lattice problems, coding problems, ...
- Standards are available since 2024 and the transition to PQC begins

Basic Quantum Information and

Computation

1-qubit

- 1. 2 base state qubits $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- 2. a quantum state $|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle=\begin{pmatrix}\alpha\\\beta\end{pmatrix}$, superposition of base qubits = linear combination, with $\alpha,\beta\in\mathbb{C}$
- 3. Eg.: $|\psi\rangle = (3+4i)|0\rangle + (2-8i)|1\rangle$, where $i^2 = -1$

1-qubit

- 1. 2 base state qubits $|0\rangle=\begin{pmatrix}1\\0\end{pmatrix}, |1\rangle=\begin{pmatrix}0\\1\end{pmatrix}$
- 2. a quantum state $|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle=\begin{pmatrix}\alpha\\\beta\end{pmatrix}$, superposition of base qubits = linear combination, with $\alpha,\beta\in\mathbb{C}$
- 3. Eg.: $|\psi\rangle = (3+4i)|0\rangle + (2-8i)|1\rangle$, where $i^2 = -1$
- 4. Norm: $|\alpha|^2 + |\beta|^2 = 1$: $|\psi\rangle = \frac{3+4i}{\sqrt{93}} |0\rangle + \frac{2-8i}{\sqrt{93}} |1\rangle$
- 5. If we measure $|\psi\rangle$, 0 with proba. $|\alpha|^2$ and 1 with proba. $|\beta|^2$
- 6. $|\phi\rangle$ and $|\psi\rangle$ are equivalent if there exists $z\in\mathbb{C}$ s.t. $|\phi\rangle=z\,|\psi\rangle$. Such qubits cannot be distinguished by measures.

5

Quantum Gates

- 1. Gate X/NOT: $|0\rangle \mapsto |1\rangle \quad |1\rangle \mapsto |0\rangle$
- 2. By linearity, $|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$, X $|\psi\rangle=\beta\,|0\rangle+\alpha\,|1\rangle$

3. Matrix version:
$$M_X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 Since $M_X |0\rangle = M_X \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle$ and $M_X |1\rangle = M_X \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |0\rangle$

Quantum Hadamard Gates

A very important gate

- 1. Gate H: $|0\rangle\mapsto \frac{|0\rangle+|1\rangle}{\sqrt{2}} \quad |1\rangle\mapsto \frac{|0\rangle-|1\rangle}{\sqrt{2}}$
- 2. By linearity, $|\psi\rangle = \alpha \, |0\rangle + \beta \, |1\rangle$, $H\, |\psi\rangle = \alpha H\, |0\rangle + \beta H\, |1\rangle$ $H\, |\psi\rangle = \frac{\alpha}{\sqrt{2}} (|0\rangle + |1\rangle) + \frac{\beta}{\sqrt{2}} (|0\rangle |1\rangle) = \frac{\alpha + \beta}{\sqrt{2}} \, |0\rangle + \frac{\alpha \beta}{\sqrt{2}} \, |1\rangle$

Quantum Hadamard Gates

A very important gate

- 1. Gate H: $|0\rangle\mapsto \frac{|0\rangle+|1\rangle}{\sqrt{2}} \quad |1\rangle\mapsto \frac{|0\rangle-|1\rangle}{\sqrt{2}}$
- 2. By linearity, $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, $H |\psi\rangle = \alpha H |0\rangle + \beta H |1\rangle$ $H |\psi\rangle = \frac{\alpha}{\sqrt{2}}(|0\rangle + |1\rangle) + \frac{\beta}{\sqrt{2}}(|0\rangle |1\rangle) = \frac{\alpha + \beta}{\sqrt{2}}|0\rangle + \frac{\alpha \beta}{\sqrt{2}}|1\rangle$
- 3. Matrix version: $M_{\rm H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

$$M_{\mathsf{H}}\ket{0} = M_{\mathsf{H}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{\ket{0} + \ket{1}}{\sqrt{2}}.$$

Similarly for $M_{\rm H} |1\rangle$.

4. Eg., if $|\psi\rangle=i\,|0\rangle+\left(2+i\right)|1\rangle$, compute $M_{\rm H}\,|\psi\rangle$?

7

Some Quantum Circuits

Some Quantum Circuits

Gates X, Y, and Z of Pauli

9

2-qubits \Rightarrow 4 possibilities

2-qubit

- $|\psi\rangle=\alpha\,|0.0\rangle+\beta\,|0.1\rangle+\gamma\,|1.0\rangle+\delta\,|1.1\rangle$, with $\alpha,\beta,\gamma,\delta\in\mathbb{C}$
- $|\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1$

•
$$\begin{pmatrix} a \\ b \end{pmatrix} \otimes \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} ac \\ ad \\ bc \\ bd \end{pmatrix}$$
 and $|0\rangle \otimes |0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = |0.0\rangle$

Vectors

$$|0.0\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \ |0.1\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \ |1.0\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \ |1.1\rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \ |\psi\rangle = \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{pmatrix}$$

2-qubits

Vectors

$$|0.0\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \ |0.1\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \ |1.0\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \ |1.1\rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \ |\psi\rangle = \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{pmatrix}$$

Tensor product: not commutative product

•
$$|0.0\rangle = |0\rangle \cdot |0\rangle = |0\rangle \otimes |0\rangle = \otimes |0\rangle$$

•
$$u = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
, $v = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$, $u \otimes v = \begin{pmatrix} x_1 y_1 \\ \vdots \\ x_1 y_m \\ x_2 y_1 \\ \vdots \\ x_n y_m \end{pmatrix}$

Tensor product

$$\begin{pmatrix} a \\ b \end{pmatrix} \otimes \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} ac \\ ad \\ bc \\ bd \end{pmatrix}, \text{ compute } \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \text{ and all base vectors}$$

Properties

- $(\lambda u) \otimes v = \lambda(u \otimes v) = u \otimes (\lambda v)$, for $\lambda \in \mathbb{C}$
- $\bullet \ (u_1+u_2)\otimes v=u_1\otimes v+u_2\otimes v$
- $\bullet \ u \otimes (v_1 + v_2) = u \otimes v_1 + u \otimes v_2$

Operations on qubits

• Addition of qubits: $|\phi\rangle=(1+3i)|0\rangle+2i|1\rangle$ and $|\psi\rangle=3|0\rangle+(1-i)|1\rangle$,

$$|\phi\rangle + |\psi\rangle = (4+3i)|0\rangle + (1+i)|1\rangle$$

For 2 2-qubits:
$$(|1.0\rangle + |0.1\rangle) + (|1.0\rangle - |0.1\rangle) = 2|1.0\rangle$$

• Multiplication of 2 1-qubit is a 2-qubit: $|\phi\rangle\cdot|\psi\rangle$

$$\begin{aligned} & \left(\left(1 + 3i \right) \left| 0 \right\rangle + 2i \left| 1 \right\rangle \right) \otimes \left(3 \left| 0 \right\rangle + \left(1 - i \right) \left| 1 \right\rangle \right) \\ & \left(1 + 3i \right) \cdot 3 \cdot \left| 0 \right\rangle \left| 0 \right\rangle + \left(1 + 3i \right) \cdot \left(1 - i \right) \left| 0 \right\rangle \left| 1 \right\rangle + 6i \cdot \left| 1 \right\rangle \left| 0 \right\rangle + \dots \\ & \left(3 + 9i \right) \left| 0.0 \right\rangle + \left(4 + 2i \right) \left| 0.1 \right\rangle + 6i \left| 1.0 \right\rangle + \left(2 + 2i \right) \left| 1.1 \right\rangle \end{aligned}$$

CNOT Gate: controlled gate with 2-qubit

If ... then ... else ...

- $|0.0\rangle \mapsto |0.0\rangle$, $|0.1\rangle \mapsto |0.1\rangle$, $|1.0\rangle \mapsto |1.1\rangle$, $|1.1\rangle \mapsto |1.0\rangle$
- If $|0.0\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, $|0.1\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$, $|1.0\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$, $|1.1\rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$,

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \text{ the upper left submatrix is the identity}$$

performed on the first line, the bottom right submatrix is the inversion operation performed on the second line

Gate CNOT with 2-qubits

n-qubits

• $|\psi\rangle = \alpha_0 |0.0..0\rangle + \alpha_1 |0.0..0.1\rangle + \ldots + \alpha_{2^n-1} |1.1..1\rangle$

$$\bullet \ |\psi\rangle = \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_{2^n - 1} \end{pmatrix} \in \mathbb{C}^{2^n}$$

- $\| |\psi\rangle \| = \sqrt{|\alpha_0|^2 + |\alpha_1|^2 + \ldots + |\alpha_{2^n 1}|^2}$
- Measure: 0.0...0 with proba. $|\alpha_0|^2$, 0.0...0.1 with proba. $|\alpha_1|^2$, ... 1.1....1 with proba. $|\alpha_{2^n-1}|^2$

n-qubits

•
$$|\psi\rangle = \alpha_0 |0.0..0\rangle + \alpha_1 |0.0..0.1\rangle + \ldots + \alpha_{2^n-1} |1.1..1\rangle$$

$$\bullet \ |\psi\rangle = \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_{2^n - 1} \end{pmatrix} \in \mathbb{C}^{2^n}$$

- $\| |\psi\rangle \| = \sqrt{|\alpha_0|^2 + |\alpha_1|^2 + \ldots + |\alpha_{2^n 1}|^2}$
- Measure: 0.0...0 with proba. $|\alpha_0|^2$, 0.0...0.1 with proba. $|\alpha_1|^2$, ... 1.1....1 with proba. $|\alpha_{2^n-1}|^2$

3-qubit Toffoli Gate (CCNOT)

Quantum Circuit

$$|\psi\rangle$$
 \nearrow A $|\psi\rangle$ where A is a unitary $A^*A = I_n$

Theorem

Every n-qubit quantum gate can be realized with a circuit using only CNOT and 1-qubit gates

Quantum Circuit

$$|\psi\rangle$$
 \nearrow A \downarrow A where A is a unitary $A^*A = I_n$

Theorem

Every n-qubit quantum gate can be realized with a circuit using only CNOT and 1-qubit gates

Theorem (Solovay-Kitaev)

There is an infinite number of 1-qubit gates, and every such gate can be approximated with only H, T, and CNOT gates

The T gate:
$$|0\rangle\mapsto|0\rangle$$
 and $|1\rangle\mapsto e^{i\pi/4}\,|1\rangle$: $T=e^{i\pi/8}\begin{pmatrix}e^{-\pi/8}&0\\0&e^{\pi/8}\end{pmatrix}$

Quantum Circuit

$$|\psi\rangle$$
 \nearrow A $|\psi\rangle$ where A is a unitary $A^*A = I_n$

Theorem

Every n-qubit quantum gate can be realized with a circuit using only CNOT and 1-qubit gates

Theorem (Solovay-Kitaev)

There is an infinite number of 1-qubit gates, and every such gate can be approximated with only H, T, and CNOT gates

Theorem: Toffoli (CCNOT) is a universal gate

- Toffoli gate is invertible: $(|a.b.c\rangle \mapsto |a.b.c \oplus (ab)\rangle)$: $T |a.b.1\rangle = |a.b.NAND(a,b)\rangle$
- Any classical circuit using N gates in the set AND, OR, NOT (universal gates for classical circuits) can be computed using O(N)
 Toffoli gates

and Simon algorithms

Basic Circuits: Deutsch-Jozsa

•
$$|\psi\rangle = \alpha |0.0\rangle + \beta |0.1\rangle + \gamma |1.0\rangle + \delta |1.1\rangle$$
, $|\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1$

• Let $|\psi\rangle=\frac{\sqrt{2}}{2}\,|0.0\rangle+\frac{1}{2}\,|0.1\rangle+\frac{1}{2}\,|1.1\rangle$. If one measures the first qubit as 1, what is the second qubit ?

•
$$|\psi\rangle = \alpha |0.0\rangle + \beta |0.1\rangle + \gamma |1.0\rangle + \delta |1.1\rangle$$
, $|\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1$

- Let $|\psi\rangle=\frac{\sqrt{2}}{2}|0.0\rangle+\frac{1}{2}|0.1\rangle+\frac{1}{2}|1.1\rangle$. If one measures the first qubit as 1, what is the second qubit ?
- the second is $|1\rangle$, but what if we observe $|0\rangle$?

$$\bullet \ |\psi\rangle = \alpha \, |0.0\rangle + \beta \, |0.1\rangle + \gamma \, |1.0\rangle + \delta \, |1.1\rangle, \ |\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1$$

- $\bullet \mid \psi \rangle$ 0 or 1
- Let $|\psi\rangle=\frac{\sqrt{2}}{2}|0.0\rangle+\frac{1}{2}|0.1\rangle+\frac{1}{2}|1.1\rangle$. If one measures the first qubit as 1, what is the second qubit ?
- the second is $|1\rangle$, but what if we observe $|0\rangle$?
- $|\psi\rangle = \frac{|0\rangle}{2} \cdot (\sqrt{2}|0\rangle + |1\rangle) + \frac{1}{2}|1\rangle|1\rangle$, the 2nd is $\sqrt{\frac{2}{3}}|0\rangle + \frac{1}{\sqrt{3}}|1\rangle$

•
$$|\psi\rangle = \alpha |0.0\rangle + \beta |0.1\rangle + \gamma |1.0\rangle + \delta |1.1\rangle$$
, $|\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1$

- $\bullet |\psi\rangle$ 0 or 1
- Let $|\psi\rangle=\frac{\sqrt{2}}{2}|0.0\rangle+\frac{1}{2}|0.1\rangle+\frac{1}{2}|1.1\rangle$. If one measures the first qubit as 1, what is the second qubit ?
- the second is $|1\rangle$, but what if we observe $|0\rangle$?
- $|\psi\rangle = \frac{|0\rangle}{2} \cdot (\sqrt{2}|0\rangle + |1\rangle) + \frac{1}{2}|1\rangle|1\rangle$, the 2nd is $\sqrt{\frac{2}{3}}|0\rangle + \frac{1}{\sqrt{3}}|1\rangle$
- More generally, $|\psi\rangle = |0\rangle \cdot (\alpha |0\rangle + \beta |1\rangle) + |1\rangle \cdot (\gamma |0\rangle + \delta |1\rangle)$, and if one measures $|0\rangle$ for the first qubit, the second $\frac{\alpha}{\sqrt{|\alpha|^2 + |\beta|^2}} |0\rangle + \frac{\beta}{\sqrt{|\alpha|^2 + |\beta|^2}} |1\rangle$

$$\bullet \ |\psi\rangle = \alpha \, |0.0\rangle + \beta \, |0.1\rangle + \gamma \, |1.0\rangle + \delta \, |1.1\rangle, \ |\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1$$

- $\bullet \mid \psi \rangle$ 0 or 1
- Let $|\psi\rangle=\frac{\sqrt{2}}{2}|0.0\rangle+\frac{1}{2}|0.1\rangle+\frac{1}{2}|1.1\rangle$. If one measures the first qubit as 1, what is the second qubit ?
- the second is $|1\rangle$, but what if we observe $|0\rangle$?
- $|\psi\rangle = \frac{|0\rangle}{2} \cdot (\sqrt{2}|0\rangle + |1\rangle) + \frac{1}{2}|1\rangle|1\rangle$, the 2nd is $\sqrt{\frac{2}{3}}|0\rangle + \frac{1}{\sqrt{3}}|1\rangle$
- Exo: If $|\psi\rangle=\frac{1}{5}(2\,|0.0.0\rangle-|0.0.1\rangle+3\,|0.1.0\rangle+|0.1.1\rangle-2\,|1.0.0\rangle+2\,|1.0.1\rangle+\sqrt{2}\,|1.1.1\rangle)$, and we measure 0.0, what is the last qubit ?

Quantum oracle gate

Oracle

- Let $f: E \longrightarrow \mathbb{Z}/2\mathbb{Z}$ be a function
- $(\mathbb{Z}/2\mathbb{Z}, +) = (\{0, 1\}, \oplus)$
- $F: E \times \mathbb{Z}/2\mathbb{Z} \longrightarrow E \times \mathbb{Z}/2\mathbb{Z}, \ (x,y) \longmapsto (x,y \oplus f(x)), \text{ is a bijection}$

Quantum oracle gate

Oracle

- Let $f: E \longrightarrow \mathbb{Z}/2\mathbb{Z}$ be a function
- $(\mathbb{Z}/2\mathbb{Z}, +) = (\{0, 1\}, \oplus)$
- $F: E \times \mathbb{Z}/2\mathbb{Z} \longrightarrow E \times \mathbb{Z}/2\mathbb{Z}, (x,y) \longmapsto (x,y \oplus f(x)),$ is a bijection
- Proof: $F^{-1} = F$, $F(F(x, y)) = F(x, y \oplus f(x)) = (x, y)$

Quantum oracle gate

Oracle

- Let $f: E \longrightarrow \mathbb{Z}/2\mathbb{Z}$ be a function
- $(\mathbb{Z}/2\mathbb{Z}, +) = (\{0, 1\}, \oplus)$
- $F: E \times \mathbb{Z}/2\mathbb{Z} \longrightarrow E \times \mathbb{Z}/2\mathbb{Z}, (x,y) \longmapsto (x,y \oplus f(x)),$ is a bijection
- Proof: $F^{-1} = F$, $F(F(x, y)) = F(x, y \oplus f(x)) = (x, y)$
- Deutsch-Jozsa Oracle $f: (\mathbb{Z}/2\mathbb{Z})^k \longrightarrow \mathbb{Z}/2\mathbb{Z}$:

Deutsch-Jozsa problem

Goal

- Let $f: \{0,1\} \longrightarrow \{0,1\}.$
- There are 4 such functions: two are constant and two are balanced (0 and 1 are taken the same number of times)

$$f_0 = \left\{ \begin{array}{ll} 0 \mapsto 0 \\ 1 \mapsto 0 \end{array} \right. f_1 = \left\{ \begin{array}{ll} 0 \mapsto 1 \\ 1 \mapsto 1 \end{array} \right. f_2 = \left\{ \begin{array}{ll} 0 \mapsto 0 \\ 1 \mapsto 1 \end{array} \right. f_3 = \left\{ \begin{array}{ll} 0 \mapsto 1 \\ 1 \mapsto 0 \end{array} \right.$$

• **Decide** if *f* is constant or balanced ?

Deutsch-Jozsa problem

Goal

- Let $f: \{0,1\} \longrightarrow \{0,1\}.$
- There are 4 such functions: two are constant and two are balanced (0 and 1 are taken the same number of times)

$$f_0 = \left\{ \begin{array}{ll} 0 \mapsto 0 \\ 1 \mapsto 0 \end{array} \right. f_1 = \left\{ \begin{array}{ll} 0 \mapsto 1 \\ 1 \mapsto 1 \end{array} \right. f_2 = \left\{ \begin{array}{ll} 0 \mapsto 0 \\ 1 \mapsto 1 \end{array} \right. f_3 = \left\{ \begin{array}{ll} 0 \mapsto 1 \\ 1 \mapsto 0 \end{array} \right.$$

- **Decide** if *f* is constant or balanced ?
- Classically, ask 2 queries (f(0)) and f(1), quantumly 1 query !

Deutsch-Jozsa problem

Goal

- Let $f: \{0,1\} \longrightarrow \{0,1\}.$
- There are 4 such functions: two are constant and two are balanced (0 and 1 are taken the same number of times)

$$f_0 = \left\{ \begin{array}{ll} 0 \mapsto 0 \\ 1 \mapsto 0 \end{array} \right. f_1 = \left\{ \begin{array}{ll} 0 \mapsto 1 \\ 1 \mapsto 1 \end{array} \right. f_2 = \left\{ \begin{array}{ll} 0 \mapsto 0 \\ 1 \mapsto 1 \end{array} \right. f_3 = \left\{ \begin{array}{ll} 0 \mapsto 1 \\ 1 \mapsto 0 \end{array} \right.$$

- **Decide** if *f* is constant or balanced ?
- Classically, ask 2 queries (f(0)) and f(1), quantumly 1 query !

Exponential gap: Let $f: \{0,1\}^n \longrightarrow \{0,1\}$ and we have the promise f is either balanced or constant.

Classically, one need at most $2^{n-1} + 1$ queries, while only 1 quantumly !

$$\bullet \ |\psi_2
angle = 0.0 - 0.1 + 1.0 - 1.1$$
,

$$|\psi_{1}\rangle \quad |\psi_{2}\rangle \quad |\psi_{3}\rangle \quad |\psi_{4}\rangle$$

$$|0\rangle \quad H \quad H \quad A \quad out$$

$$|1\rangle \quad |x\rangle \quad |x\rangle$$

$$|y\rangle \quad |y \oplus f(x)\rangle$$

•
$$|\psi_2\rangle = 0.0 - 0.1 + 1.0 - 1.1$$
,

•
$$|\psi_3\rangle = \underbrace{0.(0 \oplus f(0)) - 0.(1 \oplus f(0))}_{A} + \underbrace{1.(0 \oplus f(1)) - 1.(1 \oplus f(1))}_{B}$$

•
$$A = \begin{cases} 0.0 - 0.1 & \text{if } f(0) = 0 \\ -(0.0 - 0.1) & \text{if } f(0) = 1 \end{cases}$$
 so $A = (-1)^{f(0)}(0.0 - 0.1)$

- $|\psi_2\rangle = 0.0 0.1 + 1.0 1.1$,
- $|\psi_3\rangle = \underbrace{0.(0 \oplus f(0)) 0.(1 \oplus f(0))}_{A} + \underbrace{1.(0 \oplus f(1)) 1.(1 \oplus f(1))}_{B}$
- $A = (-1)^{f(0)}(0.0 0.1)$ and $B = (-1)^{f(1)}(1.0 1.1)$
- $|\psi_3\rangle = (-1)^{f(0)}(0.0 0.1) + (-1)^{f(1)}(1.0 1.1)$

- $|\psi_3\rangle = (-1)^{f(0)}(0.0 0.1) + (-1)^{f(1)}(1.0 1.1)$
- $|\psi_4\rangle = (-1)^{f(0)}((0+1).0-(0+1).1)+(-1)^{f(1)}((0-1).0-(0-1).1)$
- $|\psi_4\rangle = (-1)^{f(0)}(0.0 0.1 + 1.0 1.1) + (-1)^{f(1)}(0.0 0.1 1.0 + 1.1)$

$$|\psi_1\rangle \quad |\psi_2\rangle \quad |\psi_3\rangle \quad |\psi_4\rangle$$

$$|0\rangle \qquad H \qquad |0\rangle \qquad H \qquad |0\rangle \qquad$$

•
$$|\psi_4\rangle = (-1)^{f(0)}(0.0 - 0.1 + 1.0 - 1.1) + (-1)^{f(1)}(0.0 - 0.1 - 1.0 + 1.1)$$

•
$$|\psi_4\rangle = ((-1)^{f(0)} + (-1)^{f(1)})0.0 + (-(-1)^{f(0)} - (-1)^{f(1)})0.1 + ((-1)^{f(0)} - (-1)^{f(1)})1.0 + (-(-1)^{f(0)} + (-1)^{f(1)})1.1$$

- $|\psi_4\rangle = (-1)^{f(0)}(0.0 0.1 + 1.0 1.1) + (-1)^{f(1)}(0.0 0.1 1.0 + 1.1)$
- $|\psi_4\rangle = ((-1)^{f(0)} + (-1)^{f(1)})0.0 + (-(-1)^{f(0)} (-1)^{f(1)})0.1 + ((-1)^{f(0)} (-1)^{f(1)})1.0 + (-(-1)^{f(0)} + (-1)^{f(1)})1.1$
- If f is constant, $(-1)^{f(0)} + (-1)^{f(1)} = \pm 2$ and $(-1)^{f(0)} (-1)^{f(1)} = 0$ and $(-1)^{f(0)} (-1)^{f(1)} = 0$, so $|\psi_4\rangle = 0.0 0.1$ the measure of the first qubit 0 in both cases
- If f is balanced, check that the first bit is 1

Deutsch-Jozsa Circuit for n = 2

- Check that if f is constant, the final state before the measurement is $\pm |0.0\rangle \left| \frac{1}{\sqrt{2}} (0-1) \right\rangle$, and the 2 first bits are 0.0
- if *f* is balanced, the final state does not contain qubits starting with 0.0, so no measurement of these qubits will give 0.0.

Problem

Let $f:\{0,1\}^n \to \{0,1\}^n$ a 2-to-1 function so that there exists $c \in \{0,1\}^n$ such that

 $f(x) = f(x \oplus c)$, where \oplus is bitwise exclusive or

Problem

Let $f:\{0,1\}^n \to \{0,1\}^n$ a 2-to-1 function so that there exists $c \in \{0,1\}^n$ such that

 $f(x) = f(x \oplus c)$, where \oplus is bitwise exclusive or

Example

$$\begin{array}{lll} f(000) = 101 & f(100) = 011 \\ f(001) = 010 & f(101) = 100 \\ f(010) = 011 & f(110) = 101 \\ f(011) = 100 & f(111) = 010 \end{array}$$

What is c?

Problem

Let $f:\{0,1\}^n \to \{0,1\}^n$ a 2-to-1 function so that there exists $c \in \{0,1\}^n$ such that

 $f(x) = f(x \oplus c)$, where \oplus is bitwise exclusive or

Example

$$\begin{array}{lll} f(000) = 101 & f(100) = 011 \\ f(001) = 010 & f(101) = 100 \\ f(010) = 011 & f(110) = 101 \\ f(011) = 100 & f(111) = 010 \end{array}$$

What is c? c = 110

Problem

Let $f:\{0,1\}^n \to \{0,1\}^n$ a 2-to-1 function so that there exists $c \in \{0,1\}^n$ such that

 $f(x) = f(x \oplus c)$, where \oplus is bitwise exclusive or

Example

$$\begin{array}{lll} f(000) = 101 & f(100) = 011 \\ f(001) = 010 & f(101) = 100 \\ f(010) = 011 & f(110) = 101 \\ f(011) = 100 & f(111) = 010 \end{array}$$

What is c? c = 110

Classical algorithms

Problem

Let $f:\{0,1\}^n \to \{0,1\}^n$ a 2-to-1 function so that there exists $c \in \{0,1\}^n$ such that

$$f(x) = f(x \oplus c)$$
, where \oplus is bitwise exclusive or

Example

$$f(000) = 101$$
 $f(100) = 011$
 $f(001) = 010$ $f(101) = 100$
 $f(010) = 011$ $f(110) = 101$
 $f(011) = 100$ $f(111) = 010$

What is c? c = 110

Classical algorithms

• Compute f(x) until a collision $f(x_1) = f(x_2)$... and then $c = x_1 \oplus x_2$

Problem

Let $f:\{0,1\}^n \to \{0,1\}^n$ a 2-to-1 function so that there exists $c \in \{0,1\}^n$ such that

$$f(x) = f(x \oplus c)$$
, where \oplus is bitwise exclusive or

Example

$$\begin{array}{ll} f(000) = 101 & f(100) = 011 \\ f(001) = 010 & f(101) = 100 \\ f(010) = 011 & f(110) = 101 \\ f(011) = 100 & f(111) = 010 \end{array}$$

What is c? c = 110

Classical algorithms

- Compute f(x) until a collision $f(x_1) = f(x_2)$... and then $c = x_1 \oplus x_2$
- Another solution: since $f(000) \neq f(001)$, $c \neq 001$, ...

Simon Quantum Algorithm

Hadamard Transform

•
$$H^{\otimes n} |\underline{j}\rangle = \frac{1}{2^{n/2}} \sum_{k=0}^{2^n-1} (-1)^{j \cdot k} |\underline{k}\rangle$$

•
$$H^{\otimes n} |\underline{0}\rangle = \frac{1}{2^{n/2}} \sum_{k=0}^{2^n-1} |\underline{k}\rangle$$

Simon Quantum Algorithm

Hadamard Transform

•
$$H^{\otimes n} |\underline{j}\rangle = \frac{1}{2^{n/2}} \sum_{k=0}^{2^n-1} (-1)^{j \cdot k} |\underline{k}\rangle$$

•
$$H^{\otimes n} |\underline{0}\rangle = \frac{1}{2^{n/2}} \sum_{k=0}^{2^n-1} |\underline{k}\rangle$$

Simon's algorithm

Start with
$$2n$$
 qubits: $|\underline{0}\rangle |\underline{0}\rangle$
Apply $H^{\otimes n}$

$$\sum_{x} |\underline{x}\rangle |\underline{0}\rangle$$
Apply O_f

$$\sum_{x} |\underline{x}\rangle |\underline{f}(x)\rangle$$
Measure the second register
$$|\underline{x_0}\rangle + |\underline{x_0 + s}\rangle$$

$$\sum_{y} ((-1)^{x_0 \cdot y} + (-1)^{(x_0 \oplus s) \cdot y}) |\underline{y}\rangle$$

$$= \sum_{y} (-1)^{x_0 \cdot y} \cdot (1 + (-1)^{s \cdot y}) |\underline{y}\rangle$$
Measure y such that $1 + (-1)^{s \cdot y} \neq 0$ iff $s \cdot y = 0$

Measure y such that $1 + (-1)^{s \cdot y} \neq 0$ iff $s \cdot y = 0$

Simon Quantum Algorithm

Hadamard Transform

- $H^{\otimes n} |\underline{j}\rangle = \frac{1}{2^{n/2}} \sum_{k=0}^{2^n-1} (-1)^{j \cdot k} |\underline{k}\rangle$
- $H^{\otimes n} |\underline{0}\rangle = \frac{1}{2^{n/2}} \sum_{k=0}^{2^n-1} |\underline{k}\rangle$

Simon's algorithm

Start with
$$2n$$
 qubits: $|\underline{0}\rangle |\underline{0}\rangle$
Apply $H^{\otimes n}$

$$\sum_{x} |\underline{x}\rangle |\underline{0}\rangle$$
Apply O_f

$$\sum_{x} |\underline{x}\rangle |\underline{f}(x)\rangle$$
Measure the second register $|\underline{x_0}\rangle + |\underline{x_0 + s}\rangle$

$$\sum_{y} ((-1)^{x_0 \cdot y} + (-1)^{(x_0 \oplus s) \cdot y}) |\underline{y}\rangle$$

$$= \sum_{y} (-1)^{x_0 \cdot y} \cdot (1 + (-1)^{s \cdot y}) |\underline{y}\rangle$$
Measure y such that $1 + (-1)^{s \cdot y} \neq 0$ iff $s \cdot y = 0$

Post-processing

• With n-1 values y_1, \ldots, y_{n-1} independent vectors, we obtain a linear system to recover s

Shor Algorithm

- $\mathbb{Z}/N\mathbb{Z}$ is not an integral domain: N=15, $5\times 3=0$ mod 15
- $(\mathbb{Z}/N\mathbb{Z})^*$ multiplicative group of invertible elements, not cyclic!
- order of a: smallest positive integer r s.t. $a^r = 1 \mod N$
- $r|\varphi(N)$ Lagrange Theorem in the group $(\mathbb{Z}/N\mathbb{Z})^*$
- r is the smallest period of the function $f: k \mapsto a^k \mod N$

- $(\mathbb{Z}/N\mathbb{Z})^*$ multiplicative group of invertible elements, not cyclic!
- order of a: smallest positive integer r s.t. $a^r = 1 \mod N$
- $r|\varphi(N)$ Lagrange Theorem in the group $(\mathbb{Z}/N\mathbb{Z})^*$
- r is the smallest period of the function $f: k \mapsto a^k \mod N$

Assumptions

- 1. Assumption 1: ord(a) = r is even with proba. 1/2
- 2. Fact: $(a^{r/2} 1)(a^{r/2} + 1) = 0 \mod N$

- $(\mathbb{Z}/N\mathbb{Z})^*$ multiplicative group of invertible elements, not cyclic!
- order of a: smallest positive integer r s.t. $a^r = 1 \mod N$
- $r|\varphi(N)$ Lagrange Theorem in the group $(\mathbb{Z}/N\mathbb{Z})^*$
- r is the smallest period of the function $f: k \mapsto a^k \mod N$

Assumptions

- 1. Assumption 1: ord(a) = r is even with proba. 1/2
- 2. Fact: $(a^{r/2} 1)(a^{r/2} + 1) = 0 \mod N$
- 3. Assumption 2: $a^{r/2} + 1$ is not divisible by N for many a's (CRT)
- 4. Under Assumption 1 and 2: $d = \gcd(a^{r/2} 1, N)$ and $d' = \gcd(a^{r/2} + 1, N)$ are non-trivial factors of N

- $(\mathbb{Z}/N\mathbb{Z})^*$ multiplicative group of invertible elements, not cyclic!
- order of a: smallest positive integer r s.t. $a^r = 1 \mod N$
- $r|\varphi(N)$ Lagrange Theorem in the group $(\mathbb{Z}/N\mathbb{Z})^*$
- r is the smallest period of the function $f: k \mapsto a^k \mod N$

Assumptions

- 1. Assumption 1: ord(a) = r is even with proba. 1/2
- 2. Fact: $(a^{r/2} 1)(a^{r/2} + 1) = 0 \mod N$
- 3. Assumption 2: $a^{r/2} + 1$ is not divisible by N for many a's (CRT)
- 4. Under Assumption 1 and 2: $d = \gcd(a^{r/2} 1, N)$ and $d' = \gcd(a^{r/2} + 1, N)$ are non-trivial factors of N

a=2
$$(a, N) = 1$$
 $r = 4, 2^4 = 16 = 1 \mod 15$ $(2^{4/2} - 1, 15) = 3$
a=3 no
a=11 $(a, N) = 1$ $r = 2, 11^2 = 121 = 1 \mod 15$ $(11^{2/2} - 1, 15) = 5$

Order and Oracle

- order of a: smallest positive integer r s.t. $a^r = 1 \mod N$
- $r|\varphi(N)$ Lagrange Theorem in the group $(\mathbb{Z}/N\mathbb{Z})^*$
- r is the smallest period of the function $f: k \mapsto a^k \mod N$
- Oracle $F:(k,0)\mapsto (k,a^k \mod N)$
- E.g. N = 15 and a = 2, r = 4

Order and Oracle

- order of a: smallest positive integer r s.t. $a^r = 1 \mod N$
- $r|\varphi(N)$ Lagrange Theorem in the group $(\mathbb{Z}/N\mathbb{Z})^*$
- r is the smallest period of the function $f: k \mapsto a^k \mod N$
- Oracle $F:(k,0)\mapsto (k,a^k \mod N)$
- E.g. N = 15 and a = 2, r = 4

Oracle Circuit $2^n > N$

The oracle is composed of 2 registers: the first receives the integer k in binary with n bits, and the second, 0 on n bits. We write $|\underline{k}\rangle$ the register containing k written in binary. For instance, $|\underline{0}\rangle = |0, \dots, 0\rangle$ with n bits. The initial state is $|\underline{k}\rangle \otimes |\underline{0}\rangle$.

Starting the Circuit $2^n \ge N$

- Initialization: $|\psi_0\rangle = |\underline{0}\rangle \otimes |\underline{0}\rangle$.
- Hadamard: $|\psi_1\rangle = H^{\otimes n}(|\underline{0}\rangle) \otimes |\underline{0}\rangle = \left(\frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n-1} |\underline{k}\rangle\right) \otimes |\underline{0}\rangle$
- ullet Oracle: $|\psi_2
 angle=rac{1}{2^{n/2}}\sum_{k=0}^{2^n-1}|\underline{k}
 angle\otimes\left|\underline{\underline{a}^k}
 ight
 angle$

Using the period to rewrite $|\psi_2\rangle$

- Assumption 3: $ord(a) = r|2^n$. This assumption is not true, and can be removed (see later)
- Under Assumption 3: $k = \alpha r + \beta$ with $0 \le \beta < r$ and $0 \le \alpha < 2^n/r$,

$$|\psi_2\rangle = \sum_{k=0}^{2^n-1} |\underline{k}\rangle \otimes |\underline{a}^{\underline{k}}\rangle = \sum_{\beta=0}^{r-1} \left(\sum_{\alpha=0}^{2^n/r-1} |\underline{\alpha}r + \underline{\beta}\rangle\right) \otimes |a^{\underline{\beta}}\rangle$$

Using the period to rewrite $|\psi_2\rangle$

- Assumption 3: $ord(a) = r|2^n$. This assumption is not true, and can be removed (see later)
- Under Assumption 3: $k = \alpha r + \beta$ with $0 \le \beta < r$ and $0 \le \alpha < 2^n/r$,

$$|\psi_2
angle = \sum_{k=0}^{2^n-1} |\underline{k}
angle \otimes |\underline{\underline{a}^k}
angle = \sum_{\beta=0}^{r-1} \left(\sum_{\alpha=0}^{2^n/r-1} |\underline{\alpha r + \beta}
angle \right) \otimes |\underline{a^{\beta}}
angle$$

• If we measure the second register, we get for a fixed β_0 ,

$$|\psi_3\rangle = \sum_{\alpha=0}^{2^n/r-1} |\alpha r + \beta_0\rangle \otimes |a^{\beta_0}\rangle$$

Using the period to rewrite $|\psi_2 angle$

- Assumption 3: $ord(a) = r|2^n$. This assumption is not true, and can be removed (see later)
- Under Assumption 3: $k = \alpha r + \beta$ with $0 \le \beta < r$ and $0 \le \alpha < 2^n/r$,

$$|\psi_2
angle = \sum_{k=0}^{2^n-1} |\underline{k}
angle \otimes |\underline{\underline{a}^k}
angle = \sum_{\beta=0}^{r-1} \left(\sum_{\alpha=0}^{2^n/r-1} |\underline{\alpha r + \beta}
angle \right) \otimes |\underline{a^{\beta}}
angle$$

• If we measure the second register, we get for a fixed β_0 ,

$$|\psi_3\rangle = \sum_{\alpha=0}^{2^n/r-1} |\alpha r + \beta_0\rangle \otimes |a^{\beta_0}\rangle$$

- Assume we measure the first register, $|\alpha_0 r + \beta_0\rangle$ for fixed α_0 and β_0
- If we redo the computation, we will not the same β_0 ,
- We cannot do many measures of the first register ...

Example N = 15, a = 2

- $|\psi_0\rangle = |\underline{0}\rangle \otimes |\underline{0}\rangle$
- Hadamard Transform: $|\psi_1\rangle = (|\underline{0}\rangle + |\underline{1}\rangle + \ldots + |\underline{15}\rangle) \otimes |\underline{0}\rangle$
- Oracle: $|\psi_2\rangle = |\underline{0}\rangle \cdot \left|\underline{a^0}\right\rangle + |\underline{1}\rangle \cdot \left|\underline{a^1}\right\rangle + \ldots + |\underline{15}\rangle \cdot \left|\underline{a^{15}}\right\rangle$

Example N = 15, a = 2

- $|\psi_0\rangle = |\underline{0}\rangle \otimes |\underline{0}\rangle$
- Hadamard Transform: $|\psi_1\rangle = (|\underline{0}\rangle + |\underline{1}\rangle + \ldots + |\underline{15}\rangle) \otimes |\underline{0}\rangle$
- Oracle: $|\psi_2\rangle = |\underline{0}\rangle \cdot |\underline{a^0}\rangle + |\underline{1}\rangle \cdot |\underline{a^1}\rangle + \ldots + |\underline{15}\rangle \cdot |\underline{a^{15}}\rangle$
- Since $r = 4|2^4 = 16$, the values form a rectangular table

$$\begin{aligned} |\psi_2\rangle &= \left(|\underline{0}\rangle + |\underline{4}\rangle + |\underline{8}\rangle + |\underline{12}\rangle \right). |\underline{1}\rangle + \\ &\left(|\underline{1}\rangle + |\underline{5}\rangle + |\underline{9}\rangle + |\underline{13}\rangle \right). |\underline{2}\rangle + \\ &\left(|\underline{2}\rangle + |\underline{6}\rangle + |\underline{10}\rangle + |\underline{14}\rangle \right). |\underline{4}\rangle + \\ &\left(|\underline{3}\rangle + |\underline{7}\rangle + |\underline{11}\rangle + |\underline{15}\rangle \right). |\underline{8}\rangle \end{aligned}$$

• If we measure the second register, $|\underline{4}\rangle$, the first register is

$$\left|\widetilde{\psi_3}\right\rangle = \left|\underline{2}\right\rangle + \left|\underline{6}\right\rangle + \left|\underline{10}\right\rangle + \left|\underline{14}\right\rangle$$

• They are separated by the period r = 4, but how can we recover r?

Discrete Fourier Transform

Complex numbers

•

$$1 + z + \ldots + z^{n-1} = \begin{cases} n & \text{if } z = 1\\ \frac{1 - z^n}{1 - z} & \text{otherwise.} \end{cases}$$

• Crucial Lemma: $n > 0, j \in \mathbb{Z}$,

$$\frac{1}{n} \sum_{k=0}^{n-1} e^{2i\pi \frac{kj}{n}} = \begin{cases} 1 & \text{if } \frac{j}{n} \text{ is an integer} \\ 0 & \text{otherwise.} \end{cases}$$

Discrete Fourier Transform

Complex numbers

•

$$1+z+\ldots+z^{n-1}=\left\{\begin{array}{ll}n&\text{if }z=1\\\frac{1-z^n}{1-z}&\text{otherwise.}\end{array}\right.$$

• Crucial Lemma: $n > 0, j \in \mathbb{Z}$,

$$\frac{1}{n} \sum_{k=0}^{n-1} e^{2i\pi \frac{kj}{n}} = \begin{cases} 1 & \text{if } \frac{j}{n} \text{ is an integer} \\ 0 & \text{otherwise.} \end{cases}$$

Discrete Fourier Transform and Inverse

$$\widehat{F} |\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \sum_{j=0}^{2^n - 1} e^{2i\pi \frac{kj}{2^n}} |\underline{j}\rangle \text{ and } \widehat{F}^{-1} |\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \sum_{j=0}^{2^n - 1} e^{-2i\pi \frac{kj}{2^n}} |\underline{j}\rangle$$

Discrete Fourier Transform

Complex numbers

•

$$1 + z + \ldots + z^{n-1} = \begin{cases} n & \text{if } z = 1\\ \frac{1 - z^n}{1 - z} & \text{otherwise.} \end{cases}$$

• Crucial Lemma: $n > 0, j \in \mathbb{Z}$,

$$\frac{1}{n} \sum_{k=0}^{n-1} e^{2i\pi \frac{kj}{n}} = \begin{cases} 1 & \text{if } \frac{j}{n} \text{ is an integer} \\ 0 & \text{otherwise.} \end{cases}$$

Discrete Fourier Transform and Inverse

$$\widehat{F} |\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \sum_{j=0}^{2^n-1} e^{2i\pi\frac{kj}{2^n}} |\underline{j}\rangle \text{ and } \widehat{F}^{-1} |\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \sum_{j=0}^{2^n-1} e^{-2i\pi\frac{kj}{2^n}} |\underline{j}\rangle$$

The Discrete Fourier Transform is Linear and Unitary

If
$$|\psi\rangle = \sum_{k=0}^{2^n-1} \alpha_k |\underline{k}\rangle$$
, then $\widehat{F} |\psi\rangle = \sum_{k=0}^{2^n-1} \alpha_k \widehat{F} |\underline{k}\rangle$

Shor Circuit

- Initialization: $|\psi_0\rangle = |\underline{0}\rangle \otimes |\underline{0}\rangle$.
- Hadamard: $|\psi_1\rangle = H^{\otimes n}(|\underline{0}\rangle) \otimes |\underline{0}\rangle = \left(\frac{1}{\sqrt{2^n}}\sum_{k=0}^{2^n-1} |\underline{k}\rangle\right) \otimes |\underline{0}\rangle$
- Oracle: $|\psi_2\rangle = \frac{1}{2^{n/2}} \sum_{k=0}^{2^n-1} |\underline{k}\rangle \otimes |\underline{a^k}\rangle$

- Measure of the first register: $\left|\frac{2^n\ell}{r}\right>$
- Allows (often) to get r (or a factor of r)

Computation

• After measuring the second register $\left|\bar{\psi_3}\right>=\sum_{\alpha=0}^{2^n/r-1}\left|\underline{\alpha r+\beta_0}\right>$

Computation

- After measuring the second register $|\bar{\psi}_3\rangle = \sum_{\alpha=0}^{2^n/r-1} |\underline{\alpha}r + \beta_0\rangle$
- Action of \widehat{F}^{-1} :

$$\begin{split} \left|\bar{\psi}_{4}\right\rangle &= \widehat{F}^{-1}\left|\hat{\psi}_{3}\right\rangle = \sum_{\alpha=0}^{2^{n}/r-1} \widehat{F}^{-1}\left|\underline{\alpha r + \beta_{0}}\right\rangle \\ &= \sum_{\alpha} \sum_{j=0}^{2^{n}-1} e^{-\frac{2i\pi(\alpha r + \beta_{0})j}{2^{n}}}\left|\underline{j}\right\rangle = \sum_{j} \overbrace{\left(\sum_{\alpha} e^{-2i\pi\frac{\alpha j}{2^{n}/r}}\right)}^{0 \text{ or } 1} e^{-2i\pi\frac{\beta_{0}j}{2^{n}}}\left|\underline{j}\right\rangle \\ &= \sum_{j \text{ with } j/(2^{n}/r) \text{ integer}} e^{-2i\pi\frac{\beta_{0}j}{2^{n}}}\left|j\right\rangle = \sum_{\ell=0}^{r-1} e^{-2i\pi\beta_{0}\frac{\ell}{r}}\left|\frac{2^{n}\ell}{r}\right\rangle \end{split}$$

Computation

- After measuring the second register $|\bar{\psi}_3\rangle = \sum_{\alpha=0}^{2^n/r-1} |\alpha r + \beta_0\rangle$
- Action of \widehat{F}^{-1} :

$$\begin{split} \left| \bar{\psi}_{4} \right\rangle &= \hat{F}^{-1} \left| \hat{\psi}_{3} \right\rangle = \sum_{\alpha=0}^{2^{n}/r-1} \hat{F}^{-1} \left| \underline{\alpha r + \beta_{0}} \right\rangle \\ &= \sum_{\alpha} \sum_{j=0}^{2^{n}-1} \mathrm{e}^{-\frac{2i\pi(\alpha r + \beta_{0})j}{2^{n}}} \left| \underline{j} \right\rangle = \sum_{j} \overbrace{\left(\sum_{\alpha} \mathrm{e}^{-2i\pi\frac{\alpha j}{2^{n}/r}} \right)}^{0 \text{ or } 1} \mathrm{e}^{-2i\pi\frac{\beta_{0}j}{2^{n}}} \left| \underline{j} \right\rangle \\ &= \sum_{j \text{ with } \underline{j}/(2^{n}/r) \text{ integer}} \mathrm{e}^{-2i\pi\frac{\beta_{0}j}{2^{n}}} \left| \underline{j} \right\rangle = \sum_{\ell=0}^{r-1} \mathrm{e}^{-2i\pi\beta_{0}\frac{\ell}{r}} \left| \frac{2^{n}\ell}{r} \right\rangle \end{split}$$

- ullet Measure the first register: $\left| rac{2^n \ell}{r}
 ight>$, for $\ell \in \{0,1,\ldots,r-1\}$
- ullet We get $m=rac{2^n\ell}{r}$ for one of the states $\left|rac{2^n\ell}{r}
 ight>$

Measure the first register

$m = \frac{2^n \ell}{r}$ integer with n known and ℓ unknown

- Divide m by 2^n to obtain the rational $x = \frac{m}{2^n} = \frac{\ell}{r}$
- If $x \in \mathbb{Z}$, we get no information on r, and we redo the quantum circuit
- If $gcd(\ell, r) = 1$, then $\frac{\ell}{r}$ is irreducible and we get r.
- If $\gcd(\ell,r) \neq 1$, then $x = \frac{m}{2^n} = \frac{\ell'}{r'} = \frac{\ell}{r}$ and we get r' a factor of r. We redo the computation with $a' = a^{r'}$ which is of period r/r'.

Implementation of the oracle

Reduce exponentiation to controlled multi-product modulo *N*:

$$f(x) = a^x = \prod_i (a^{2^i})^{x_i} = \prod_i (a_i)^{x_i} \mod N$$
, where $a_i = a^{2^i} \mod N$

The constants a_i are precomputed:

- Asymptotic best: $O(n \times (n \log n))$ operations
- Typical: $O(n \times (n^2))$ operations

Shor for any even order

Up to now..

- If $r|2^n$, measuring $\left|\frac{2^n\ell}{r}\right\rangle$ gives an integer $m=\frac{2^n\ell}{r}$ and $x=\frac{m}{2^n}=\frac{\ell}{r}$ which allows to recover r or a factor
- As $r|2^n$, m is a multiple of $\frac{2^n}{r}$ and x is a multiple of $\frac{1}{r}$

Shor for any even order

Up to now..

- If $r|2^n$, measuring $\left|\frac{2^n\ell}{r}\right\rangle$ gives an integer $m=\frac{2^n\ell}{r}$ and $x=\frac{m}{2^n}=\frac{\ell}{r}$ which allows to recover r or a factor
- As $r|2^n$, m is a multiple of $\frac{2^n}{r}$ and x is a multiple of $\frac{1}{r}$

Now...

- If $r \nmid 2^n$, the measurement gives an integer m which is close to $\frac{2^n \ell}{r}$, but $\frac{2^n \ell}{r}$ is not any more an integer ...
- The rational $x = \frac{m}{2^n}$ is close to a multiple of $\frac{1}{r}$ but not an exact multiple...

Continued Fractions

Definition

•
$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\dots + \frac{1}{a_2}}}}$$
, noted $[a_0, a_1, \dots, a_n]$

• E.g.,
$$[5, 2, 1, 4] = 5 + \frac{1}{2 + \frac{1}{1 + \frac{1}{2}}} = 5.3571428...$$

•
$$[5] = 5, [5, 2] = \frac{11}{2} = 5.5, [5, 2, 1] = \frac{16}{3} = 5.33...$$

Continued Fractions

Definition

- $a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_1 \frac{1}{a_n}}}}$, noted $[a_0, a_1, \dots, a_n]$
- E.g., $[5, 2, 1, 4] = 5 + \frac{1}{2 + \frac{1}{1 + \frac{1}{2}}} = 5.3571428...$
- $[5] = 5, [5, 2] = \frac{11}{2} = 5.5, [5, 2, 1] = \frac{16}{3} = 5.33...$

Good Approximation by continued fractions

- $\pi=3.14159\ldots pprox rac{314}{100}$ (denominator is large)
- $\frac{314}{100} = 3 + \frac{14}{100} = 3 + \frac{1}{\frac{100}{14}} = 3 + \frac{1}{7 + \frac{2}{14}} = 3 + \frac{1}{7 + \frac{1}{7}} = [3, 7, 7]$
- $[3,7] = 3 + \frac{1}{7} = \frac{22}{7} = 3.1428$
- $[3,7,15,1] = \frac{355}{113} = 3.14159292...$ (same order with 6 exact values instead of 2)

Example Shor with N = 21

- N = 21, a = 2, $2^n = 512 = 2^9$
- Circuit outputs $|427\rangle$, so $x = \frac{427}{512}$
- $\frac{427}{512} \approx \frac{4}{5}$ so order 5 ??
- $\frac{427}{512} = [0, 1, 5, 42, 2]$ and $[0, 1] = 1, [0, 1, 5] = \frac{5}{6}, [0, 1, 5, 42] = \frac{211}{253}$
- We keep the best fraction whose denominator is ≤ N and it gives r
 or a fraction of r

Example Shor with N = 21

- N = 21, a = 2, $2^n = 512 = 2^9$
- Circuit outputs $|427\rangle$, so $x = \frac{427}{512}$
- $\frac{427}{512} \approx \frac{4}{5}$ so order 5 ??
- $\frac{427}{512} = [0, 1, 5, 42, 2]$ and $[0, 1] = 1, [0, 1, 5] = \frac{5}{6}, [0, 1, 5, 42] = \frac{211}{253}$
- We keep the best fraction whose denominator is ≤ N and it gives r
 or a fraction of r

Shor algorithm with arbitrary order

- N = 21, a = 2, $2^n = 512 = 2^9 \ge N^2$
- $|\psi_0\rangle = |\underline{0}\rangle \otimes |\underline{0}\rangle$
- $|\psi_1\rangle = \sum_{k=0}^{r-1} |\underline{k}\rangle \otimes |\underline{0}\rangle$
- $|\psi_2\rangle = \sum_{k=0}^{r-1} |\underline{k}\rangle \otimes |\underline{a^k \mod N}\rangle$
- r = 6 and $\frac{2^n \ell}{r} \notin \mathbb{Z}$

Example

The first two lines have 86 terms and 85 in the others

• The state $|\psi_2\rangle$ is not rectangular:

$$\begin{aligned} |\psi_2\rangle &= \frac{1}{\sqrt{512}} (|\underline{0}\rangle + |\underline{6}\rangle + \ldots + |\underline{504}\rangle + |\underline{510}\rangle) |\underline{1}\rangle \\ &+ \frac{1}{\sqrt{512}} (|\underline{1}\rangle + |\underline{7}\rangle + \ldots + |\underline{505}\rangle + |\underline{511}\rangle) |\underline{2}\rangle \\ &+ \frac{1}{\sqrt{512}} (|\underline{2}\rangle + |\underline{8}\rangle + \ldots + |\underline{506}\rangle) |\underline{4}\rangle \\ &+ \ldots \\ &+ \frac{1}{\sqrt{512}} (|\underline{5}\rangle + |\underline{11}\rangle + \ldots + |\underline{509}\rangle) |\underline{11}\rangle \end{aligned}$$

Example

The first two lines have 86 terms and 85 in the others

• The state $|\psi_2\rangle$ is not rectangular:

$$\begin{split} |\psi_2\rangle &= \frac{1}{\sqrt{512}} \big(|\underline{0}\rangle + |\underline{6}\rangle + \ldots + |\underline{504}\rangle + |\underline{510}\rangle \big) \, |\underline{1}\rangle \\ &+ \frac{1}{\sqrt{512}} \big(|\underline{1}\rangle + |\underline{7}\rangle + \ldots + |\underline{505}\rangle + |\underline{511}\rangle \big) \, |\underline{2}\rangle \\ &+ \frac{1}{\sqrt{512}} \big(|\underline{2}\rangle + |\underline{8}\rangle + \ldots + |\underline{506}\rangle \big) \, |\underline{4}\rangle \\ &+ \ldots \\ &+ \frac{1}{\sqrt{512}} \big(|\underline{5}\rangle + |\underline{11}\rangle + \ldots + |\underline{509}\rangle \big) \, |\underline{11}\rangle \end{split}$$

- measure the second register $|2\rangle$: $|\psi_3\rangle = |\underline{1}\rangle + |\underline{7}\rangle + \ldots + |\underline{511}\rangle$
- $|\psi_4\rangle = \hat{F}^{-1} |\psi_3\rangle = \sum_{\alpha=0}^{85} \hat{F}^{-1} |6\alpha + 1\rangle$

•
$$|\psi_4\rangle = \sum_{j=0}^{511} \left(\sum_{\alpha=0}^{85} e^{-2i\pi\frac{6\alpha j}{512}}\right) e^{-2i\pi\frac{j}{512}} |\underline{j}\rangle$$

Example Shor with arbitrary order

$$|\psi_4\rangle = \frac{1}{\sqrt{512}} \sum_{j=0}^{511} \left(\frac{1}{\sqrt{86}} \sum_{\alpha=0}^{85} e^{-2i\pi \frac{6\alpha j}{512}} \right) e^{-2i\pi \frac{j}{512}} |\underline{j}\rangle$$

Now,
$$\Sigma(j)=\frac{1}{\sqrt{86}}\sum_{\alpha=0}^{85} \mathrm{e}^{-2i\pi\frac{6\alpha j}{512}}$$
 does not take only $0/1$ values.

Example Shor with arbitrary order

$$|\psi_4\rangle = \frac{1}{\sqrt{512}} \sum_{j=0}^{511} \left(\frac{1}{\sqrt{86}} \sum_{\alpha=0}^{85} e^{-2i\pi \frac{6\alpha j}{512}} \right) e^{-2i\pi \frac{j}{512}} |\underline{j}\rangle$$

Now, $\Sigma(j)=\frac{1}{\sqrt{86}}\sum_{\alpha=0}^{85}e^{-2i\pi\frac{6\alpha j}{512}}$ does not take only 0/1 values.

If we measure the first register, we get $|j\rangle$ with probability $|\Sigma(j)|^2$.

The proba. are \approx 0, except when $j \approx \frac{2^n \ell}{r}$: for $\ell = 5$, $\frac{512 \times 5}{6} = 426.66$.

	j	p_j
	422	0.00062
	423	0.00099
	424	0.00186
	425	0.00469
	426	0.02888
	427	0.11389
	428	0.00702
	429	0.00226
	430	0.00109
	431	0.00063

Hardy-Wright Theorem

Theorem

Let $x \in \mathbb{R}$ and a rational $rac{p}{q}$ such that

$$\left|x-\frac{p}{q}\right|<\frac{1}{2q^2}.$$

Then, $\frac{p}{q}$ is obtained as one of the continued fractions of x.

Hardy-Wright Theorem

Theorem

Let $x \in \mathbb{R}$ and a rational $\frac{p}{q}$ such that

$$\left|x-\frac{p}{q}\right|<\frac{1}{2q^2}.$$

Then, $\frac{p}{q}$ is obtained as one of the continued fractions of x.

Let m the closest integer to $\frac{2^n\ell}{r}$. So, $|m-\frac{2^n\ell}{r}|<\frac{1}{2}$.

If $x = \frac{m}{2^n}$, we get $|x - \frac{\ell}{r}| < \frac{1}{2^{n+1}}$.

As we set $2^n \ge N^2 \ge r^2$, $|x - \frac{\ell}{r}| < \frac{1}{2r^2}$.

Using Theorem, we obtain $\frac{\ell}{r}$ as one of the continued fractions of x.

Generalization

 HSP (Hidden Subgroup Problem): Let G a group and H a subgroup. The function f is constant on each coset of H, find H

- HSP (Hidden Subgroup Problem): Let G a group and H a subgroup. The function f is constant on each coset of H, find H
- Shor and Simon algorithms: special case of HSP

- HSP (Hidden Subgroup Problem): Let G a group and H a subgroup. The function f is constant on each coset of H, find H
- Shor and Simon algorithms: special case of HSP
- Kitaev: any Abelian Group G

- HSP (Hidden Subgroup Problem): Let G a group and H a subgroup. The function f is constant on each coset of H, find H
- Shor and Simon algorithms: special case of HSP
- Kitaev: any Abelian Group G
- Non-abelian: Kuperberg subexponential algo. for Dihedral HSP

- HSP (Hidden Subgroup Problem): Let G a group and H a subgroup. The function f is constant on each coset of H, find H
- Shor and Simon algorithms: special case of HSP
- Kitaev: any Abelian Group G
- Non-abelian: Kuperberg subexponential algo. for Dihedral HSP
- LWE (learning with errors problems) can be reduced to (stronger version) Dihedral HSP (with errors)

Generalization

- HSP (Hidden Subgroup Problem): Let G a group and H a subgroup. The function f is constant on each coset of H, find H
- Shor and Simon algorithms: special case of HSP
- Kitaev: any Abelian Group G
- Non-abelian: Kuperberg subexponential algo. for Dihedral HSP
- LWE (learning with errors problems) can be reduced to (stronger version) Dihedral HSP (with errors)

How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits

Craig Gidney¹ and Martin Ekerå²

ullet Shor algorithm: 3n qubits and $O(n^2)$ gates

- Shor algorithm: 3n qubits and $O(n^2)$ gates
- Regev algorithm: $O(n^{3/2})$ qubits and $O(n^{3/2})$ gates, runs $n^{1/2}$

- Shor algorithm: 3n qubits and $O(n^2)$ gates
- Regev algorithm: $O(n^{3/2})$ qubits and $O(n^{3/2})$ gates, runs $n^{1/2}$
- Pilatte removes mathematical assumptions in Regev algorithm

- Shor algorithm: 3n qubits and $O(n^2)$ gates
- Regev algorithm: $O(n^{3/2})$ qubits and $O(n^{3/2})$ gates, runs $n^{1/2}$
- Pilatte removes mathematical assumptions in Regev algorithm
- Ragavan-Vaikuntanathan (C'24): 10n qubits and $O(n^{3/2})$ gates, runs $n^{1/2}$

- Shor algorithm: 3n qubits and $O(n^2)$ gates
- Regev algorithm: $O(n^{3/2})$ qubits and $O(n^{3/2})$ gates, runs $n^{1/2}$
- Pilatte removes mathematical assumptions in Regev algorithm
- Ragavan-Vaikuntanathan (C'24): 10n qubits and $O(n^{3/2})$ gates, runs $n^{1/2}$
- n/2 + o(n) qubits and $O(n^2)$ gates, runs constants [CFS25]

Reducing the number of qubits

New algorithm¹

- Factoring RSA moduli using n/2 + o(n) qubits and $O(n^3)$ gates
- \bullet For RSA-2048: ≤ 1700 qubits and $\leq 60 \times 2^{36}$ Toffoli gates (60 runs)
- Based on a completely classical arithmetic circuit

¹CFS, CRYPTO 2025, "Reducing the Number of Qubits in Quantum Factoring"

New algorithm¹

- Factoring RSA moduli using n/2 + o(n) qubits and $O(n^3)$ gates
- For RSA-2048: \leq 1700 qubits and \leq 60 \times 2³⁶ Toffoli gates (60 runs)
- Based on a completely classical arithmetic circuit
- Gidney reduces: qubits down to 1399 logical qubits by computing the MSB rather than the LSB, 2³² Toffoli gates as previous counting and 9.2 runs, and update estimates at the physical level

Gidney latest result

How to factor 2048 bit RSA integers with less than a million noisy qubits

Craig Gidney

Google Quantum Al, Santa Barbara, California 93117, USA June 9, 2025

¹CFS, CRYPTO 2025, "Reducing the Number of Qubits in Quantum Factoring"

Discrete logarithm and RSA special case

Find **d** s.t. $a = g^d$:

 $^{^2}$ Ekerå, Håstad, "Quantum algorithms for computing short discrete logarithms and factoring RSA integers, PQCrypto 2017"

Discrete logarithm and RSA special case

Find **d** s.t.
$$a = g^{d}$$
: $f(x, y) := g^{x} a^{-y} = g^{x-dy} \mod N$

- Also a hidden period problem: f(x + d, y + 1) = f(x, y)
- Also reduces to controlled multi-product

 $^{^2{\}sf Eker \mathring{a}},$ Håstad, "Quantum algorithms for computing short discrete logarithms and factoring RSA integers, PQCrypto 2017"

Discrete logarithm and RSA special case

Find **d** s.t.
$$a = g^{d}$$
: $f(x, y) := g^{x} a^{-y} = g^{x - dy} \mod N$

- Also a hidden period problem: f(x + d, y + 1) = f(x, y)
- Also reduces to controlled multi-product

Ekerå & Håstad method²:

- Reduce RSA factorisation (N = pq) to small DLOG of size n/2: if we recover p + q, we can factor N
- Use an input register of size n/2 + (n/2)/s for some s
- $\approx s+1$ measurements to find d via an efficient lattice-based post-processing. Typically $s=O(\log n)$.

Space is reduced to: n/2 + workspace

 $^{^2{\}rm Eker}$ å, Håstad, "Quantum algorithms for computing short discrete logarithms and factoring RSA integers, PQCrypto 2017"

Ideas

• Once p + q is known, using N = pq, recover p is easy

 $^{^{3}\,\}mathrm{``Quantum\ period-finding\ is\ compression\ robust''}$

- Once p + q is known, using N = pq, recover p is easy
- $G = \langle g \rangle$ a cyclic subgroup of $(\mathbb{Z}/N\mathbb{Z})^*$ of order > (p+q-2)/2
- Compute $x = g^{(N-1)/2} = g^{(p+q-2)/2} \mod N$ since $(N \varphi(N) 1)/2 = (p+q-2)/2$ as $\varphi(N) = N p q + 1$
- Compute short discrete logarithm d = (p + q 2)/2 from g and x

³ "Quantum period-finding is compression robust"

- Once p + q is known, using N = pq, recover p is easy
- $G = \langle g \rangle$ a cyclic subgroup of $(\mathbb{Z}/N\mathbb{Z})^*$ of order > (p+q-2)/2
- Compute $x = g^{(N-1)/2} = g^{(p+q-2)/2} \mod N$ since $(N \varphi(N) 1)/2 = (p+q-2)/2$ as $\varphi(N) = N p q + 1$
- Compute short discrete logarithm d = (p + q 2)/2 from g and x
- Get many pairs (j, k) s.t. k is the ℓ most significant bits of dj mod 2^m: Hidden Number Problem (HNP)

³ "Quantum period-finding is compression robust"

- Once p + q is known, using N = pq, recover p is easy
- $G = \langle g \rangle$ a cyclic subgroup of $(\mathbb{Z}/N\mathbb{Z})^*$ of order > (p+q-2)/2
- Compute $x = g^{(N-1)/2} = g^{(p+q-2)/2} \mod N$ since $(N \varphi(N) 1)/2 = (p+q-2)/2$ as $\varphi(N) = N p q + 1$
- Compute short discrete logarithm d = (p + q 2)/2 from g and x
- Get many pairs (j, k) s.t. k is the ℓ most significant bits of dj mod 2^m: Hidden Number Problem (HNP)
- May, Schlieper³: we can replace f by $h \circ f$ where h is a universal hash function is still periodic

³ "Quantum period-finding is compression robust"

- Once p + q is known, using N = pq, recover p is easy
- $G = \langle g \rangle$ a cyclic subgroup of $(\mathbb{Z}/N\mathbb{Z})^*$ of order > (p+q-2)/2
- Compute $x = g^{(N-1)/2} = g^{(p+q-2)/2} \mod N$ since $(N \varphi(N) 1)/2 = (p+q-2)/2$ as $\varphi(N) = N p q + 1$
- Compute short discrete logarithm d = (p + q 2)/2 from g and x
- Get many pairs (j, k) s.t. k is the ℓ most significant bits of dj mod 2^m: Hidden Number Problem (HNP)
- May, Schlieper³: we can replace f by $h \circ f$ where h is a universal hash function is still periodic
- How to compute some bits of $a^k \mod N \mod 2^r$ with $o(\log n)$ extra space using RNS

³ "Quantum period-finding is compression robust"

• To break RSA-2048, 1400 logical qubits are needed

- To break RSA-2048, 1400 logical qubits are needed
- For DLP and small discrete log or Schnorr-like mechanisms, 300 logical qubits are needed (safe prime p of 1024 bits)

- To break RSA-2048, 1400 logical qubits are needed
- For DLP and small discrete log or Schnorr-like mechanisms, 300 logical qubits are needed (safe prime p of 1024 bits)
- For ECDLP, 2124 qubits for 256-bit [HJNRS20], ... and seems to be more complicate than factoring

- To break RSA-2048, 1400 logical qubits are needed
- For DLP and small discrete log or Schnorr-like mechanisms, 300 logical qubits are needed (safe prime p of 1024 bits)
- For ECDLP, 2124 qubits for 256-bit [HJNRS20], ... and seems to be more complicate than factoring
- but stay tune, many new results are coming