
Number of Qubits in Quantum Factoring

SAC 2025

Pierre-Alain Fouque

Université de Rennes

Contents

1. Introduction to Quantum Computation

2. Basic Circuits: Deutsch-Jozsa and Simon algorithms

3. Shor algorithm

4. Other quantum factorisation algorithms

1

Cryptography: Hard Computational problems (I)

In 1978, Rivest, Shamir, and Adleman described the RSA cryptosystem

whose security is related to the untractability of factoring

Factorization Problem
Given an integer N = pq, where p and q are two primes. Recover p ?

Classical algorithm:

• Number Field Sieve (NFS). Complexity: 2Õ(n1/3) (constants

matter...) where n is the size of N: n = log2(N)

• Record: 250-digits (830 bits): 2700 computer years

• ≈ 2128 for a 2048-bit modulus

2

Cryptography: Hard Computational problems (I)

In 1978, Rivest, Shamir, and Adleman described the RSA cryptosystem

whose security is related to the untractability of factoring

Factorization Problem
Given an integer N = pq, where p and q are two primes. Recover p ?

Classical algorithm:

• Number Field Sieve (NFS). Complexity: 2Õ(n1/3) (constants

matter...) where n is the size of N: n = log2(N)

• Record: 250-digits (830 bits): 2700 computer years

• ≈ 2128 for a 2048-bit modulus

2

Cryptography: Hard Computational problems (II)

Discrete Logarithm
Let p a prime and q a prime divisor of p − 1, and g a generator of the

q-order subgroup of (Z/pZ)∗. Given y = g x mod p, recover x ?

Example: g = 2 in (Z/11Z)∗

• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 5 mod 11, 25 = 10 mod 11, 26 =

9 mod 11, 27 = 7 mod 11, 28 = 3 mod 11, 29 = 6 mod 11, 210 =

1 mod 11...

• What is the subgroup generated by 4 ? generated by 10 ?

• As (Z/pZ)∗ is cyclic, for all d |p − 1, there is a subgroup of order d

Complexity and Security level

• Classical algorithms: Pollard
√
q and NFS: 2Õ((log2 p)

1/3)

• p a 2048-bit prime and q a 256-bit prime

3

Cryptography: Hard Computational problems (II)

Discrete Logarithm
Let p a prime and q a prime divisor of p − 1, and g a generator of the

q-order subgroup of (Z/pZ)∗. Given y = g x mod p, recover x ?

Example: g = 2 in (Z/11Z)∗

• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 5 mod 11, 25 = 10 mod 11, 26 =

9 mod 11, 27 = 7 mod 11, 28 = 3 mod 11, 29 = 6 mod 11, 210 =

1 mod 11...

• What is the subgroup generated by 4 ? generated by 10 ?

• As (Z/pZ)∗ is cyclic, for all d |p − 1, there is a subgroup of order d

Complexity and Security level

• Classical algorithms: Pollard
√
q and NFS: 2Õ((log2 p)

1/3)

• p a 2048-bit prime and q a 256-bit prime

3

Cryptography: Hard Computational problems (II)

Discrete Logarithm
Let p a prime and q a prime divisor of p − 1, and g a generator of the

q-order subgroup of (Z/pZ)∗. Given y = g x mod p, recover x ?

Example: g = 2 in (Z/11Z)∗

• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 5 mod 11, 25 = 10 mod 11, 26 =

9 mod 11, 27 = 7 mod 11, 28 = 3 mod 11, 29 = 6 mod 11, 210 =

1 mod 11...

• What is the subgroup generated by 4 ? generated by 10 ?

• As (Z/pZ)∗ is cyclic, for all d |p − 1, there is a subgroup of order d

Complexity and Security level

• Classical algorithms: Pollard
√
q and NFS: 2Õ((log2 p)

1/3)

• p a 2048-bit prime and q a 256-bit prime

3

Cryptography: Hard Computational problems (II)

Discrete Logarithm
Let p a prime and q a prime divisor of p − 1, and g a generator of the

q-order subgroup of (Z/pZ)∗. Given y = g x mod p, recover x ?

Example: g = 2 in (Z/11Z)∗

• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 5 mod 11, 25 = 10 mod 11, 26 =

9 mod 11, 27 = 7 mod 11, 28 = 3 mod 11, 29 = 6 mod 11, 210 =

1 mod 11...

• What is the subgroup generated by 4 ? generated by 10 ?

• As (Z/pZ)∗ is cyclic, for all d |p − 1, there is a subgroup of order d

Complexity and Security level

• Classical algorithms: Pollard
√
q and NFS: 2Õ((log2 p)

1/3)

• p a 2048-bit prime and q a 256-bit prime

3

Cryptography: Hard Computational problems (II)

Discrete Logarithm
Let p a prime and q a prime divisor of p − 1, and g a generator of the

q-order subgroup of (Z/pZ)∗. Given y = g x mod p, recover x ?

Example: g = 2 in (Z/11Z)∗

• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 5 mod 11, 25 = 10 mod 11, 26 =

9 mod 11, 27 = 7 mod 11, 28 = 3 mod 11, 29 = 6 mod 11, 210 =

1 mod 11...

• What is the subgroup generated by 4 ? generated by 10 ?

• As (Z/pZ)∗ is cyclic, for all d |p − 1, there is a subgroup of order d

Complexity and Security level

• Classical algorithms: Pollard
√
q and NFS: 2Õ((log2 p)

1/3)

• p a 2048-bit prime and q a 256-bit prime

3

Cryptography: Hard Computational problems (II)

Discrete Logarithm
Let p a prime and q a prime divisor of p − 1, and g a generator of the

q-order subgroup of (Z/pZ)∗. Given y = g x mod p, recover x ?

Example: g = 2 in (Z/11Z)∗

• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 5 mod 11, 25 = 10 mod 11, 26 =

9 mod 11, 27 = 7 mod 11, 28 = 3 mod 11, 29 = 6 mod 11, 210 =

1 mod 11...

• What is the subgroup generated by 4 ? generated by 10 ?

• As (Z/pZ)∗ is cyclic, for all d |p − 1, there is a subgroup of order d

Complexity and Security level

• Classical algorithms: Pollard
√
q and NFS: 2Õ((log2 p)

1/3)

• p a 2048-bit prime and q a 256-bit prime

3

Cryptography: Hard Computational problems (II)

Discrete Logarithm
Let p a prime and q a prime divisor of p − 1, and g a generator of the

q-order subgroup of (Z/pZ)∗. Given y = g x mod p, recover x ?

Example: g = 2 in (Z/11Z)∗

• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 5 mod 11, 25 = 10 mod 11, 26 =

9 mod 11, 27 = 7 mod 11, 28 = 3 mod 11, 29 = 6 mod 11, 210 =

1 mod 11...

• What is the subgroup generated by 4 ? generated by 10 ?

• As (Z/pZ)∗ is cyclic, for all d |p − 1, there is a subgroup of order d

Complexity and Security level

• Classical algorithms: Pollard
√
q and NFS: 2Õ((log2 p)

1/3)

• p a 2048-bit prime and q a 256-bit prime

3

Shor’s quantum factorisation algorithm (1996)

Breakthrough

• Polynomial-time algorithm O(n2) gates and O(n) qubits

• If we were able to built a noise-free quantum algorithm, we will be

able to break all communications...

• Post-Quantum Cryptography: classical algorithms where hard

problems are conjectured to resist quantum computers ...

• E.g.: hard lattice problems, coding problems, ...

• Standards are available since 2024 and the transition to PQC begins

4

Shor’s quantum factorisation algorithm (1996)

Breakthrough

• Polynomial-time algorithm O(n2) gates and O(n) qubits

• If we were able to built a noise-free quantum algorithm, we will be

able to break all communications...

• Post-Quantum Cryptography: classical algorithms where hard

problems are conjectured to resist quantum computers ...

• E.g.: hard lattice problems, coding problems, ...

• Standards are available since 2024 and the transition to PQC begins

4

Shor’s quantum factorisation algorithm (1996)

Breakthrough

• Polynomial-time algorithm O(n2) gates and O(n) qubits

• If we were able to built a noise-free quantum algorithm, we will be

able to break all communications...

• Post-Quantum Cryptography: classical algorithms where hard

problems are conjectured to resist quantum computers ...

• E.g.: hard lattice problems, coding problems, ...

• Standards are available since 2024 and the transition to PQC begins

4

Shor’s quantum factorisation algorithm (1996)

Breakthrough

• Polynomial-time algorithm O(n2) gates and O(n) qubits

• If we were able to built a noise-free quantum algorithm, we will be

able to break all communications...

• Post-Quantum Cryptography: classical algorithms where hard

problems are conjectured to resist quantum computers ...

• E.g.: hard lattice problems, coding problems, ...

• Standards are available since 2024 and the transition to PQC begins

4

Shor’s quantum factorisation algorithm (1996)

Breakthrough

• Polynomial-time algorithm O(n2) gates and O(n) qubits

• If we were able to built a noise-free quantum algorithm, we will be

able to break all communications...

• Post-Quantum Cryptography: classical algorithms where hard

problems are conjectured to resist quantum computers ...

• E.g.: hard lattice problems, coding problems, ...

• Standards are available since 2024 and the transition to PQC begins

4

Basic Quantum Information and

Computation

1-qubit

1. 2 base state qubits |0⟩ =

(
1

0

)
, |1⟩ =

(
0

1

)

2. a quantum state |ψ⟩ = α |0⟩+ β |1⟩ =

(
α

β

)
, superposition of base

qubits = linear combination, with α, β ∈ C

3. Eg.: |ψ⟩ = (3 + 4i) |0⟩+ (2− 8i) |1⟩, where i2 = −1

4. Norm: |α|2 + |β|2 = 1: |ψ⟩ = 3+4i√
93

|0⟩+ 2−8i√
93

|1⟩
5. If we measure |ψ⟩, 0 with proba. |α|2 and 1 with proba. |β|2

6. |ϕ⟩ and |ψ⟩ are equivalent if there exists z ∈ C s.t. |ϕ⟩ = z |ψ⟩.
Such qubits cannot be distinguished by measures.

5

1-qubit

1. 2 base state qubits |0⟩ =

(
1

0

)
, |1⟩ =

(
0

1

)

2. a quantum state |ψ⟩ = α |0⟩+ β |1⟩ =

(
α

β

)
, superposition of base

qubits = linear combination, with α, β ∈ C

3. Eg.: |ψ⟩ = (3 + 4i) |0⟩+ (2− 8i) |1⟩, where i2 = −1

4. Norm: |α|2 + |β|2 = 1: |ψ⟩ = 3+4i√
93

|0⟩+ 2−8i√
93

|1⟩
5. If we measure |ψ⟩, 0 with proba. |α|2 and 1 with proba. |β|2

6. |ϕ⟩ and |ψ⟩ are equivalent if there exists z ∈ C s.t. |ϕ⟩ = z |ψ⟩.
Such qubits cannot be distinguished by measures.

5

Quantum Gates

1. Gate X/NOT: |0⟩ 7→ |1⟩ |1⟩ 7→ |0⟩
2. By linearity, |ψ⟩ = α |0⟩+ β |1⟩, X |ψ⟩ = β |0⟩+ α |1⟩

3. Matrix version: MX =

(
0 1

1 0

)
Since

MX |0⟩ = MX

(
1

0

)
=

(
0

1

)
= |1⟩ and

MX |1⟩ = MX

(
0

1

)
=

(
1

0

)
= |0⟩

6

Quantum Hadamard Gates

A very important gate

1. Gate H: |0⟩ 7→ |0⟩+|1⟩√
2

|1⟩ 7→ |0⟩−|1⟩√
2

2. By linearity, |ψ⟩ = α |0⟩+ β |1⟩, H |ψ⟩ = αH |0⟩+ βH |1⟩
H |ψ⟩ = α√

2
(|0⟩+ |1⟩) + β√

2
(|0⟩ − |1⟩) = α+β√

2
|0⟩+ α−β√

2
|1⟩

3. Matrix version: MH = 1√
2

(
1 1

1 −1

)

MH |0⟩ = MH

(
1

0

)
=

1√
2

(
1

1

)
=

|0⟩+ |1⟩√
2

.

Similarly for MH |1⟩.
4. Eg., if |ψ⟩ = i |0⟩+ (2 + i) |1⟩, compute MH |ψ⟩ ?

7

Quantum Hadamard Gates

A very important gate

1. Gate H: |0⟩ 7→ |0⟩+|1⟩√
2

|1⟩ 7→ |0⟩−|1⟩√
2

2. By linearity, |ψ⟩ = α |0⟩+ β |1⟩, H |ψ⟩ = αH |0⟩+ βH |1⟩
H |ψ⟩ = α√

2
(|0⟩+ |1⟩) + β√

2
(|0⟩ − |1⟩) = α+β√

2
|0⟩+ α−β√

2
|1⟩

3. Matrix version: MH = 1√
2

(
1 1

1 −1

)

MH |0⟩ = MH

(
1

0

)
=

1√
2

(
1

1

)
=

|0⟩+ |1⟩√
2

.

Similarly for MH |1⟩.
4. Eg., if |ψ⟩ = i |0⟩+ (2 + i) |1⟩, compute MH |ψ⟩ ?

7

Some Quantum Circuits

|0⟩ 1

|1⟩ 0

X

X

|ψ⟩ = α |0⟩+ β |1⟩

{
0 with proba. |β|2

1 with proba. |α|2X

X |ψ⟩ = β |0⟩+ α |1⟩

|0⟩

{
0 with proba. 1/2

1 with proba. 1/2
H

H |0⟩ = 1√
2
(|0⟩+ |1⟩)

|1⟩

{
0 with proba. 1/2

1 with proba. 1/2
H

H |1⟩ = 1√
2
(|0⟩ − |1⟩)

|0⟩ 0H H

HH |0⟩ = 1√
2
(H |0⟩+ H |1⟩) = |0⟩

8

Some Quantum Circuits

|0⟩ 1

|1⟩ 0

X

X

|ψ⟩ = α |0⟩+ β |1⟩

{
0 with proba. |β|2

1 with proba. |α|2X

X |ψ⟩ = β |0⟩+ α |1⟩

|0⟩

{
0 with proba. 1/2

1 with proba. 1/2
H

H |0⟩ = 1√
2
(|0⟩+ |1⟩)

|1⟩

{
0 with proba. 1/2

1 with proba. 1/2
H

H |1⟩ = 1√
2
(|0⟩ − |1⟩)

|0⟩ 0H H

HH |0⟩ = 1√
2
(H |0⟩+ H |1⟩) = |0⟩

8

Gates X, Y, and Z of Pauli

{
|0⟩ 7→ |1⟩
|1⟩ 7→ |0⟩

X =

(
0 1

1 0

)
X

{
|0⟩ 7→ i |1⟩
|1⟩ 7→ −i |0⟩

Y =

(
0 −i

i 0

)
Y

{
|0⟩ 7→ |0⟩
|1⟩ 7→ − |1⟩

Z =

(
1 0

0 −1

)
Z

9

2-qubits ⇒ 4 possibilities

2-qubit

• |ψ⟩ = α |0.0⟩+ β |0.1⟩+ γ |1.0⟩+ δ |1.1⟩, with α, β, γ, δ ∈ C

• |α|2 + |β|2 + |γ|2 + |δ|2 = 1

•

(
a

b

)
⊗

(
c

d

)
=


ac

ad

bc

bd

 and |0⟩⊗ |0⟩ =

(
1

0

)
⊗

(
1

0

)
=


1

0

0

0

 = |0.0⟩

Vectors

|0.0⟩ =


1

0

0

0

, |0.1⟩ =


0

1

0

0

, |1.0⟩ =


0

0

1

0

, |1.1⟩ =


0

0

0

1

, |ψ⟩ =


α

β

γ

δ


10

2-qubits

Vectors

|0.0⟩ =


1

0

0

0

, |0.1⟩ =


0

1

0

0

, |1.0⟩ =


0

0

1

0

, |1.1⟩ =


0

0

0

1

, |ψ⟩ =


α

β

γ

δ


Tensor product: not commutative product

• |0.0⟩ = |0⟩ . |0⟩ = |0⟩ ⊗ |0⟩ =
|0⟩
⊗
|0⟩

• u =


x1
x2
...

xn

, v =


y1
y2
...

ym

, u ⊗ v =



x1y1
...

x1ym
x2y1
...

xnym


11

Tensor product

(
a

b

)
⊗

(
c

d

)
=


ac

ad

bc

bd

, compute

(
1

0

)
⊗

(
1

0

)
, and all base vectors

Properties

• (λu)⊗ v = λ(u ⊗ v) = u ⊗ (λv), for λ ∈ C

• (u1 + u2)⊗ v = u1 ⊗ v + u2 ⊗ v

• u ⊗ (v1 + v2) = u ⊗ v1 + u ⊗ v2

12

Operations on qubits

• Addition of qubits: |ϕ⟩ = (1 + 3i) |0⟩+ 2i |1⟩ and
|ψ⟩ = 3 |0⟩+ (1− i) |1⟩,

|ϕ⟩+ |ψ⟩ = (4 + 3i) |0⟩+ (1 + i) |1⟩

For 2 2-qubits: (|1.0⟩+ |0.1⟩) + (|1.0⟩ − |0.1⟩) = 2 |1.0⟩
• Multiplication of 2 1-qubit is a 2-qubit: |ϕ⟩ · |ψ⟩

((1 + 3i) |0⟩+ 2i |1⟩)⊗ (3 |0⟩+ (1− i) |1⟩)
(1 + 3i) · 3 · |0⟩ |0⟩+ (1 + 3i) · (1− i) |0⟩ |1⟩+ 6i · |1⟩ |0⟩+ ...

(3 + 9i) |0.0⟩+ (4 + 2i) |0.1⟩+ 6i |1.0⟩+ (2 + 2i) |1.1⟩

13

CNOT Gate: controlled gate with 2-qubit

If ... then ... else ...

• |0.0⟩ 7→ |0.0⟩ , |0.1⟩ 7→ |0.1⟩ , |1.0⟩ 7→ |1.1⟩ , |1.1⟩ 7→ |1.0⟩

• If |0.0⟩ =


1

0

0

0

, |0.1⟩ =


0

1

0

0

, |1.0⟩ =


0

0

1

0

, |1.1⟩ =


0

0

0

1

,

M =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

, the upper left submatrix is the identity

performed on the first line, the bottom right submatrix is the

inversion operation performed on the second line

14

Gate CNOT with 2-qubits

|0.0⟩ 7→ |0.0⟩
|0⟩ |0⟩

|0⟩ |0⟩

|0.1⟩ 7→ |0.1⟩
|0⟩ |0⟩

|1⟩ |1⟩

|1.0⟩ 7→ |1.1⟩
|1⟩ |1⟩

|0⟩ |1⟩

|1.1⟩ 7→ |1.0⟩
|1⟩ |1⟩

|1⟩ |0⟩
15

n-qubits

• |ψ⟩ = α0 |0.0..0⟩+ α1 |0.0..0.1⟩+ . . .+ α2n−1 |1.1..1⟩

• |ψ⟩ =


α0

α1

...

α2n−1

 ∈ C2n

• ∥ |ψ⟩ ∥ =
√
|α0|2 + |α1|2 + . . .+ |α2n−1|2

• Measure: 0.0...0 with proba. |α0|2, 0.0...0.1 with proba. |α1|2, ...
1.1....1 with proba. |α2n−1|2

3-qubit Toffoli Gate (CCNOT)

|x⟩ |x⟩

|y⟩ |y⟩

|z⟩ |z⟩ if (x , y) ̸= (1, 1)

16

n-qubits

• |ψ⟩ = α0 |0.0..0⟩+ α1 |0.0..0.1⟩+ . . .+ α2n−1 |1.1..1⟩

• |ψ⟩ =


α0

α1

...

α2n−1

 ∈ C2n

• ∥ |ψ⟩ ∥ =
√
|α0|2 + |α1|2 + . . .+ |α2n−1|2

• Measure: 0.0...0 with proba. |α0|2, 0.0...0.1 with proba. |α1|2, ...
1.1....1 with proba. |α2n−1|2

3-qubit Toffoli Gate (CCNOT)

|x⟩ |x⟩

|y⟩ |y⟩

|z⟩ |z⟩ if (x , y) ̸= (1, 1)
16

Quantum Circuit

n n|ψ⟩ A |ψ⟩A where A is a unitary A∗A = In

Theorem
Every n-qubit quantum gate can be realized with a circuit using only

CNOT and 1-qubit gates

Theorem (Solovay-Kitaev)
There is an infinite number of 1-qubit gates, and every such gate can be

approximated with only H, T, and CNOT gates

Theorem: Toffoli (CCNOT) is a universal gate

• Toffoli gate is invertible: (|a.b.c⟩ 7→ |a.b.c ⊕ (ab)⟩):
T |a.b.1⟩ = |a.b.NAND(a, b)⟩

• Any classical circuit using N gates in the set AND, OR, NOT

(universal gates for classical circuits) can be computed using O(N)

Toffoli gates

17

Quantum Circuit

n n|ψ⟩ A |ψ⟩A where A is a unitary A∗A = In

Theorem
Every n-qubit quantum gate can be realized with a circuit using only

CNOT and 1-qubit gates

Theorem (Solovay-Kitaev)
There is an infinite number of 1-qubit gates, and every such gate can be

approximated with only H, T, and CNOT gates

The T gate: |0⟩ 7→ |0⟩ and |1⟩ 7→ e iπ/4 |1⟩: T = e iπ/8

(
e−π/8 0

0 eπ/8

)

Theorem: Toffoli (CCNOT) is a universal gate

• Toffoli gate is invertible: (|a.b.c⟩ 7→ |a.b.c ⊕ (ab)⟩):
T |a.b.1⟩ = |a.b.NAND(a, b)⟩

• Any classical circuit using N gates in the set AND, OR, NOT

(universal gates for classical circuits) can be computed using O(N)

Toffoli gates

17

Quantum Circuit

n n|ψ⟩ A |ψ⟩A where A is a unitary A∗A = In

Theorem
Every n-qubit quantum gate can be realized with a circuit using only

CNOT and 1-qubit gates

Theorem (Solovay-Kitaev)
There is an infinite number of 1-qubit gates, and every such gate can be

approximated with only H, T, and CNOT gates

Theorem: Toffoli (CCNOT) is a universal gate

• Toffoli gate is invertible: (|a.b.c⟩ 7→ |a.b.c ⊕ (ab)⟩):
T |a.b.1⟩ = |a.b.NAND(a, b)⟩

• Any classical circuit using N gates in the set AND, OR, NOT

(universal gates for classical circuits) can be computed using O(N)

Toffoli gates

17

Basic Circuits: Deutsch-Jozsa

and Simon algorithms

Partial Measurement of a 2-qubit

• |ψ⟩ = α |0.0⟩+β |0.1⟩+ γ |1.0⟩+ δ |1.1⟩, |α|2 + |β|2 + |γ|2 + |δ|2 = 1

• |ψ⟩
0 or 1

?

• Let |ψ⟩ =
√
2
2 |0.0⟩+ 1

2 |0.1⟩+
1
2 |1.1⟩. If one measures the first qubit

as 1, what is the second qubit ?

• the second is |1⟩, but what if we observe |0⟩ ?

• |ψ⟩ = |0⟩
2 · (

√
2 |0⟩+ |1⟩) + 1

2 |1⟩ |1⟩, the 2nd is
√

2
3 |0⟩+

1√
3
|1⟩

• Exo: If |ψ⟩ = 1
5 (2 |0.0.0⟩ − |0.0.1⟩+ 3 |0.1.0⟩+ |0.1.1⟩ − 2 |1.0.0⟩+

2 |1.0.1⟩+
√
2 |1.1.1⟩), and we measure 0.0, what is the last qubit ?

18

Partial Measurement of a 2-qubit

• |ψ⟩ = α |0.0⟩+β |0.1⟩+ γ |1.0⟩+ δ |1.1⟩, |α|2 + |β|2 + |γ|2 + |δ|2 = 1

• |ψ⟩
0 or 1

?

• Let |ψ⟩ =
√
2
2 |0.0⟩+ 1

2 |0.1⟩+
1
2 |1.1⟩. If one measures the first qubit

as 1, what is the second qubit ?

• the second is |1⟩, but what if we observe |0⟩ ?

• |ψ⟩ = |0⟩
2 · (

√
2 |0⟩+ |1⟩) + 1

2 |1⟩ |1⟩, the 2nd is
√

2
3 |0⟩+

1√
3
|1⟩

• Exo: If |ψ⟩ = 1
5 (2 |0.0.0⟩ − |0.0.1⟩+ 3 |0.1.0⟩+ |0.1.1⟩ − 2 |1.0.0⟩+

2 |1.0.1⟩+
√
2 |1.1.1⟩), and we measure 0.0, what is the last qubit ?

18

Partial Measurement of a 2-qubit

• |ψ⟩ = α |0.0⟩+β |0.1⟩+ γ |1.0⟩+ δ |1.1⟩, |α|2 + |β|2 + |γ|2 + |δ|2 = 1

• |ψ⟩
0 or 1

?

• Let |ψ⟩ =
√
2
2 |0.0⟩+ 1

2 |0.1⟩+
1
2 |1.1⟩. If one measures the first qubit

as 1, what is the second qubit ?

• the second is |1⟩, but what if we observe |0⟩ ?

• |ψ⟩ = |0⟩
2 · (

√
2 |0⟩+ |1⟩) + 1

2 |1⟩ |1⟩, the 2nd is
√

2
3 |0⟩+

1√
3
|1⟩

• Exo: If |ψ⟩ = 1
5 (2 |0.0.0⟩ − |0.0.1⟩+ 3 |0.1.0⟩+ |0.1.1⟩ − 2 |1.0.0⟩+

2 |1.0.1⟩+
√
2 |1.1.1⟩), and we measure 0.0, what is the last qubit ?

18

Partial Measurement of a 2-qubit

• |ψ⟩ = α |0.0⟩+β |0.1⟩+ γ |1.0⟩+ δ |1.1⟩, |α|2 + |β|2 + |γ|2 + |δ|2 = 1

• |ψ⟩
0 or 1

?

• Let |ψ⟩ =
√
2
2 |0.0⟩+ 1

2 |0.1⟩+
1
2 |1.1⟩. If one measures the first qubit

as 1, what is the second qubit ?

• the second is |1⟩, but what if we observe |0⟩ ?

• |ψ⟩ = |0⟩
2 · (

√
2 |0⟩+ |1⟩) + 1

2 |1⟩ |1⟩, the 2nd is
√

2
3 |0⟩+

1√
3
|1⟩

• More generally, |ψ⟩ = |0⟩ · (α |0⟩+ β |1⟩) + |1⟩ · (γ |0⟩+ δ |1⟩), and if

one measures |0⟩ for the first qubit, the second
α√

|α|2+|β|2
|0⟩+ β√

|α|2+|β|2
|1⟩

• Exo: If |ψ⟩ = 1
5 (2 |0.0.0⟩ − |0.0.1⟩+ 3 |0.1.0⟩+ |0.1.1⟩ − 2 |1.0.0⟩+

2 |1.0.1⟩+
√
2 |1.1.1⟩), and we measure 0.0, what is the last qubit ?

18

Partial Measurement of a 2-qubit

• |ψ⟩ = α |0.0⟩+β |0.1⟩+ γ |1.0⟩+ δ |1.1⟩, |α|2 + |β|2 + |γ|2 + |δ|2 = 1

• |ψ⟩
0 or 1

?

• Let |ψ⟩ =
√
2
2 |0.0⟩+ 1

2 |0.1⟩+
1
2 |1.1⟩. If one measures the first qubit

as 1, what is the second qubit ?

• the second is |1⟩, but what if we observe |0⟩ ?

• |ψ⟩ = |0⟩
2 · (

√
2 |0⟩+ |1⟩) + 1

2 |1⟩ |1⟩, the 2nd is
√

2
3 |0⟩+

1√
3
|1⟩

• Exo: If |ψ⟩ = 1
5 (2 |0.0.0⟩ − |0.0.1⟩+ 3 |0.1.0⟩+ |0.1.1⟩ − 2 |1.0.0⟩+

2 |1.0.1⟩+
√
2 |1.1.1⟩), and we measure 0.0, what is the last qubit ?

18

Quantum oracle gate

Oracle

• Let f : E −→ Z/2Z be a function

• (Z/2Z,+) = ({0, 1},⊕)

• F : E ×Z/2Z −→ E ×Z/2Z, (x , y) 7−→ (x , y ⊕ f (x)), is a bijection

• Proof: F−1 = F , F (F (x , y)) = F (x , y ⊕ f (x)) = (x , y)

• Deutsch-Jozsa Oracle f : (Z/2Z)k −→ Z/2Z:
x1 x1

...
...

xk xk

y y ⊕ f (x1, . . . , xk)

Of

19

Quantum oracle gate

Oracle

• Let f : E −→ Z/2Z be a function

• (Z/2Z,+) = ({0, 1},⊕)

• F : E ×Z/2Z −→ E ×Z/2Z, (x , y) 7−→ (x , y ⊕ f (x)), is a bijection

• Proof: F−1 = F , F (F (x , y)) = F (x , y ⊕ f (x)) = (x , y)

• Deutsch-Jozsa Oracle f : (Z/2Z)k −→ Z/2Z:
x1 x1

...
...

xk xk

y y ⊕ f (x1, . . . , xk)

Of

19

Quantum oracle gate

Oracle

• Let f : E −→ Z/2Z be a function

• (Z/2Z,+) = ({0, 1},⊕)

• F : E ×Z/2Z −→ E ×Z/2Z, (x , y) 7−→ (x , y ⊕ f (x)), is a bijection

• Proof: F−1 = F , F (F (x , y)) = F (x , y ⊕ f (x)) = (x , y)

• Deutsch-Jozsa Oracle f : (Z/2Z)k −→ Z/2Z:
x1 x1

...
...

xk xk

y y ⊕ f (x1, . . . , xk)

Of

19

Deutsch-Jozsa problem

Goal

• Let f : {0, 1} −→ {0, 1}.
• There are 4 such functions: two are constant and two are balanced

(0 and 1 are taken the same number of times)

f0 =

{
0 7→ 0

1 7→ 0
f1 =

{
0 7→ 1

1 7→ 1
f2 =

{
0 7→ 0

1 7→ 1
f3 =

{
0 7→ 1

1 7→ 0

• Decide if f is constant or balanced ?

• Classically, ask 2 queries (f (0) and f (1)), quantumly 1 query !

Exponential gap: Let f : {0, 1}n −→ {0, 1} and we have the promise f is

either balanced or constant.

Classically, one need at most 2n−1 + 1 queries, while only 1 quantumly !

20

Deutsch-Jozsa problem

Goal

• Let f : {0, 1} −→ {0, 1}.
• There are 4 such functions: two are constant and two are balanced

(0 and 1 are taken the same number of times)

f0 =

{
0 7→ 0

1 7→ 0
f1 =

{
0 7→ 1

1 7→ 1
f2 =

{
0 7→ 0

1 7→ 1
f3 =

{
0 7→ 1

1 7→ 0

• Decide if f is constant or balanced ?

• Classically, ask 2 queries (f (0) and f (1)), quantumly 1 query !

Exponential gap: Let f : {0, 1}n −→ {0, 1} and we have the promise f is

either balanced or constant.

Classically, one need at most 2n−1 + 1 queries, while only 1 quantumly !

20

Deutsch-Jozsa problem

Goal

• Let f : {0, 1} −→ {0, 1}.
• There are 4 such functions: two are constant and two are balanced

(0 and 1 are taken the same number of times)

f0 =

{
0 7→ 0

1 7→ 0
f1 =

{
0 7→ 1

1 7→ 1
f2 =

{
0 7→ 0

1 7→ 1
f3 =

{
0 7→ 1

1 7→ 0

• Decide if f is constant or balanced ?

• Classically, ask 2 queries (f (0) and f (1)), quantumly 1 query !

Exponential gap: Let f : {0, 1}n −→ {0, 1} and we have the promise f is

either balanced or constant.

Classically, one need at most 2n−1 + 1 queries, while only 1 quantumly !

20

Deutsch-Jozsa Quantum Circuit (n = 1)

•

|0⟩ out

|1⟩

H

Of

H

H

• with

|x⟩ |x⟩

|y⟩ |y ⊕ f (x)⟩
Of

•

|0⟩ out

|1⟩

H

Of

H

H

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

|ψ1⟩ = (|0⟩+ |1⟩). |1⟩,
|ψ2⟩ = (|0⟩+ |1⟩).(|0⟩ − |1⟩) = 0.0− 0.1 + 1.0− 1.1

21

Deutsch-Jozsa Quantum Circuit (n = 1)

•

|0⟩ out

|1⟩

H

Of

H

H

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

|ψ1⟩ = (|0⟩+ |1⟩). |1⟩,
|ψ2⟩ = (|0⟩+ |1⟩).(|0⟩ − |1⟩) = 0.0− 0.1 + 1.0− 1.1

21

Deutsch-Jozsa Quantum Circuit (n = 1)

|0⟩ out

|1⟩

H

Of

H

H

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

|x⟩ |x⟩

|y⟩ |y ⊕ f (x)⟩
Of

• |ψ2⟩ = 0.0− 0.1 + 1.0− 1.1,

• |ψ3⟩ = 0.(0⊕ f (0))− 0.(1⊕ f (0))︸ ︷︷ ︸
A

+1.(0⊕ f (1))− 1.(1⊕ f (1))︸ ︷︷ ︸
B

• |ψ3⟩ = (−1)f (0)(0.0− 0.1) + (−1)f (1)(1.0− 1.1)

22

Deutsch-Jozsa Quantum Circuit (n = 1)

|0⟩ out

|1⟩

H

Of

H

H

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

|x⟩ |x⟩

|y⟩ |y ⊕ f (x)⟩
Of

• |ψ2⟩ = 0.0− 0.1 + 1.0− 1.1,

• |ψ3⟩ = 0.(0⊕ f (0))− 0.(1⊕ f (0))︸ ︷︷ ︸
A

+1.(0⊕ f (1))− 1.(1⊕ f (1))︸ ︷︷ ︸
B

• A =

{
0.0− 0.1 if f (0) = 0

−(0.0− 0.1) if f (0) = 1
so A = (−1)f (0)(0.0− 0.1)

• |ψ3⟩ = (−1)f (0)(0.0− 0.1) + (−1)f (1)(1.0− 1.1)

22

Deutsch-Jozsa Quantum Circuit (n = 1)

|0⟩ out

|1⟩

H

Of

H

H

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

|x⟩ |x⟩

|y⟩ |y ⊕ f (x)⟩
Of

• |ψ2⟩ = 0.0− 0.1 + 1.0− 1.1,

• |ψ3⟩ = 0.(0⊕ f (0))− 0.(1⊕ f (0))︸ ︷︷ ︸
A

+1.(0⊕ f (1))− 1.(1⊕ f (1))︸ ︷︷ ︸
B

• A = (−1)f (0)(0.0− 0.1) and B = (−1)f (1)(1.0− 1.1)

• |ψ3⟩ = (−1)f (0)(0.0− 0.1) + (−1)f (1)(1.0− 1.1)
22

Deutsch-Jozsa Quantum Circuit (n = 1)

•

|0⟩ out

|1⟩

H

Of

H

H

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

• |ψ3⟩ = (−1)f (0)(0.0− 0.1) + (−1)f (1)(1.0− 1.1)

• |ψ4⟩ = (−1)f (0)((0+1).0−(0+1).1)+(−1)f (1)((0−1).0−(0−1).1)

• |ψ4⟩ = (−1)f (0)(0.0−0.1+1.0−1.1)+(−1)f (1)(0.0−0.1−1.0+1.1)

23

Deutsch-Jozsa Quantum Circuit (n = 1)

•

|0⟩ out

|1⟩

H

Of

H

H

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

• |ψ4⟩ = (−1)f (0)(0.0−0.1+1.0−1.1)+(−1)f (1)(0.0−0.1−1.0+1.1)

• |ψ4⟩ = ((−1)f (0) + (−1)f (1))0.0 + (−(−1)f (0) − (−1)f (1))0.1 +

((−1)f (0) − (−1)f (1))1.0 + (−(−1)f (0) + (−1)f (1))1.1

• If f is constant, (−1)f (0) + (−1)f (1) = ±2 and

(−1)f (0) − (−1)f (1) = 0 and (−1)f (0) − (−1)f (1) = 0, so

|ψ4⟩ = 0.0− 0.1 the measure of the first qubit 0 in both cases

• If f is balanced, check that the first bit is 1

24

Deutsch-Jozsa Quantum Circuit (n = 1)

•

|0⟩ out

|1⟩

H

Of

H

H

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

• |ψ4⟩ = (−1)f (0)(0.0−0.1+1.0−1.1)+(−1)f (1)(0.0−0.1−1.0+1.1)

• |ψ4⟩ = ((−1)f (0) + (−1)f (1))0.0 + (−(−1)f (0) − (−1)f (1))0.1 +

((−1)f (0) − (−1)f (1))1.0 + (−(−1)f (0) + (−1)f (1))1.1

• If f is constant, (−1)f (0) + (−1)f (1) = ±2 and

(−1)f (0) − (−1)f (1) = 0 and (−1)f (0) − (−1)f (1) = 0, so

|ψ4⟩ = 0.0− 0.1 the measure of the first qubit 0 in both cases

• If f is balanced, check that the first bit is 1

24

Deutsch-Jozsa Quantum Circuit (n = 1)

•

|0⟩ out

|1⟩

H

Of

H

H

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

• |ψ4⟩ = (−1)f (0)(0.0−0.1+1.0−1.1)+(−1)f (1)(0.0−0.1−1.0+1.1)

• |ψ4⟩ = ((−1)f (0) + (−1)f (1))0.0 + (−(−1)f (0) − (−1)f (1))0.1 +

((−1)f (0) − (−1)f (1))1.0 + (−(−1)f (0) + (−1)f (1))1.1

• If f is constant, (−1)f (0) + (−1)f (1) = ±2 and

(−1)f (0) − (−1)f (1) = 0 and (−1)f (0) − (−1)f (1) = 0, so

|ψ4⟩ = 0.0− 0.1 the measure of the first qubit 0 in both cases

• If f is balanced, check that the first bit is 1

24

Deutsch-Jozsa Circuit for n = 2

|0⟩

|0⟩ |

|1⟩

H

Of

H

out

H H

H

|x⟩ |x⟩

|y⟩ |y⟩

|z⟩ |z ⊕ f (x , y)⟩

Of

• Check that if f is constant, the final state before the measurement is

± |0.0⟩
∣∣∣ 1√

2
(0− 1)

〉
, and the 2 first bits are 0.0

• if f is balanced, the final state does not contain qubits starting with

0.0, so no measurement of these qubits will give 0.0.
25

Simon algorithm

Problem
Let f : {0, 1}n → {0, 1}n a 2-to-1 function so that there exists

c ∈ {0, 1}n such that

f (x) = f (x ⊕ c), where ⊕ is bitwise exclusive or

Example

f(000) = 101 f(100) = 011

f(001) = 010 f(101) = 100

f(010) = 011 f(110) = 101

f(011) = 100 f(111) = 010

What is c ? c = 110

Classical algorithms

• Compute f (x) until a collision f (x1) = f (x2) ... and then c = x1⊕ x2

• Another solution: since f (000) ̸= f (001), c ̸= 001, ...

26

Simon algorithm

Problem
Let f : {0, 1}n → {0, 1}n a 2-to-1 function so that there exists

c ∈ {0, 1}n such that

f (x) = f (x ⊕ c), where ⊕ is bitwise exclusive or

Example

f(000) = 101 f(100) = 011

f(001) = 010 f(101) = 100

f(010) = 011 f(110) = 101

f(011) = 100 f(111) = 010

What is c ?

c = 110

Classical algorithms

• Compute f (x) until a collision f (x1) = f (x2) ... and then c = x1⊕ x2

• Another solution: since f (000) ̸= f (001), c ̸= 001, ...

26

Simon algorithm

Problem
Let f : {0, 1}n → {0, 1}n a 2-to-1 function so that there exists

c ∈ {0, 1}n such that

f (x) = f (x ⊕ c), where ⊕ is bitwise exclusive or

Example

f(000) = 101 f(100) = 011

f(001) = 010 f(101) = 100

f(010) = 011 f(110) = 101

f(011) = 100 f(111) = 010

What is c ? c = 110

Classical algorithms

• Compute f (x) until a collision f (x1) = f (x2) ... and then c = x1⊕ x2

• Another solution: since f (000) ̸= f (001), c ̸= 001, ...

26

Simon algorithm

Problem
Let f : {0, 1}n → {0, 1}n a 2-to-1 function so that there exists

c ∈ {0, 1}n such that

f (x) = f (x ⊕ c), where ⊕ is bitwise exclusive or

Example

f(000) = 101 f(100) = 011

f(001) = 010 f(101) = 100

f(010) = 011 f(110) = 101

f(011) = 100 f(111) = 010

What is c ? c = 110

Classical algorithms

• Compute f (x) until a collision f (x1) = f (x2) ... and then c = x1⊕ x2

• Another solution: since f (000) ̸= f (001), c ̸= 001, ...

26

Simon algorithm

Problem
Let f : {0, 1}n → {0, 1}n a 2-to-1 function so that there exists

c ∈ {0, 1}n such that

f (x) = f (x ⊕ c), where ⊕ is bitwise exclusive or

Example

f(000) = 101 f(100) = 011

f(001) = 010 f(101) = 100

f(010) = 011 f(110) = 101

f(011) = 100 f(111) = 010

What is c ? c = 110

Classical algorithms

• Compute f (x) until a collision f (x1) = f (x2) ... and then c = x1⊕ x2

• Another solution: since f (000) ̸= f (001), c ̸= 001, ...

26

Simon algorithm

Problem
Let f : {0, 1}n → {0, 1}n a 2-to-1 function so that there exists

c ∈ {0, 1}n such that

f (x) = f (x ⊕ c), where ⊕ is bitwise exclusive or

Example

f(000) = 101 f(100) = 011

f(001) = 010 f(101) = 100

f(010) = 011 f(110) = 101

f(011) = 100 f(111) = 010

What is c ? c = 110

Classical algorithms

• Compute f (x) until a collision f (x1) = f (x2) ... and then c = x1⊕ x2

• Another solution: since f (000) ̸= f (001), c ̸= 001, ... 26

Simon Quantum Algorithm

Hadamard Transform

• H⊗n
∣∣j〉 = 1

2n/2

∑2n−1
k=0 (−1)j·k |k⟩

• H⊗n |0⟩ = 1
2n/2

∑2n−1
k=0 |k⟩

Simon’s algorithm
Start with 2n qubits: |0⟩ |0⟩
Apply H⊗n

∑
x |x⟩ |0⟩

Apply Of

∑
x |x⟩

∣∣∣f (x)〉
Measure the second register

∣∣x0〉+ ∣∣x0 + s
〉

Apply H⊗n
∑

y ((−1)x0·y + (−1)(x0⊕s)·y)
∣∣y〉

=
∑

y (−1)x0·y · (1 + (−1)s·y)
∣∣y〉

Measure y such that 1 + (−1)s·y ̸= 0 iff s · y = 0

Post-processing

• With n − 1 values y1, . . . , yn−1 independent vectors, we obtain a

linear system to recover s

27

Simon Quantum Algorithm

Hadamard Transform

• H⊗n
∣∣j〉 = 1

2n/2

∑2n−1
k=0 (−1)j·k |k⟩

• H⊗n |0⟩ = 1
2n/2

∑2n−1
k=0 |k⟩

Simon’s algorithm
Start with 2n qubits: |0⟩ |0⟩
Apply H⊗n

∑
x |x⟩ |0⟩

Apply Of

∑
x |x⟩

∣∣∣f (x)〉
Measure the second register

∣∣x0〉+ ∣∣x0 + s
〉

Apply H⊗n
∑

y ((−1)x0·y + (−1)(x0⊕s)·y)
∣∣y〉

=
∑

y (−1)x0·y · (1 + (−1)s·y)
∣∣y〉

Measure y such that 1 + (−1)s·y ̸= 0 iff s · y = 0

Post-processing

• With n − 1 values y1, . . . , yn−1 independent vectors, we obtain a

linear system to recover s

27

Simon Quantum Algorithm

Hadamard Transform

• H⊗n
∣∣j〉 = 1

2n/2

∑2n−1
k=0 (−1)j·k |k⟩

• H⊗n |0⟩ = 1
2n/2

∑2n−1
k=0 |k⟩

Simon’s algorithm
Start with 2n qubits: |0⟩ |0⟩
Apply H⊗n

∑
x |x⟩ |0⟩

Apply Of

∑
x |x⟩

∣∣∣f (x)〉
Measure the second register

∣∣x0〉+ ∣∣x0 + s
〉

Apply H⊗n
∑

y ((−1)x0·y + (−1)(x0⊕s)·y)
∣∣y〉

=
∑

y (−1)x0·y · (1 + (−1)s·y)
∣∣y〉

Measure y such that 1 + (−1)s·y ̸= 0 iff s · y = 0

Post-processing

• With n − 1 values y1, . . . , yn−1 independent vectors, we obtain a

linear system to recover s
27

Shor Algorithm

Arithmetic

• Z/NZ is not an integral domain: N = 15, 5× 3 = 0 mod 15

• (Z/NZ)∗ multiplicative group of invertible elements, not cyclic !

• order of a: smallest positive integer r s.t. ar = 1 mod N

• r |φ(N) Lagrange Theorem in the group (Z/NZ)∗

• r is the smallest period of the function f : k 7→ ak mod N

Assumptions

1. Assumption 1: ord(a) = r is even with proba. 1/2

2. Fact: (ar/2 − 1)(ar/2 + 1) = 0 mod N

3. Assumption 2: ar/2 + 1 is not divisible by N for many a’s (CRT)

4. Under Assumption 1 and 2: d = gcd(ar/2 − 1,N) and

d ′ = gcd(ar/2 + 1,N) are non-trivial factors of N

a=2 (a,N) = 1 r = 4, 24 = 16 = 1 mod 15 (24/2 − 1, 15) = 3

a=3 no

a=11 (a,N) = 1 r = 2, 112 = 121 = 1 mod 15 (112/2 − 1, 15) = 5

28

Arithmetic

• (Z/NZ)∗ multiplicative group of invertible elements, not cyclic !

• order of a: smallest positive integer r s.t. ar = 1 mod N

• r |φ(N) Lagrange Theorem in the group (Z/NZ)∗

• r is the smallest period of the function f : k 7→ ak mod N

Assumptions

1. Assumption 1: ord(a) = r is even with proba. 1/2

2. Fact: (ar/2 − 1)(ar/2 + 1) = 0 mod N

3. Assumption 2: ar/2 + 1 is not divisible by N for many a’s (CRT)

4. Under Assumption 1 and 2: d = gcd(ar/2 − 1,N) and

d ′ = gcd(ar/2 + 1,N) are non-trivial factors of N

a=2 (a,N) = 1 r = 4, 24 = 16 = 1 mod 15 (24/2 − 1, 15) = 3

a=3 no

a=11 (a,N) = 1 r = 2, 112 = 121 = 1 mod 15 (112/2 − 1, 15) = 5

28

Arithmetic

• (Z/NZ)∗ multiplicative group of invertible elements, not cyclic !

• order of a: smallest positive integer r s.t. ar = 1 mod N

• r |φ(N) Lagrange Theorem in the group (Z/NZ)∗

• r is the smallest period of the function f : k 7→ ak mod N

Assumptions

1. Assumption 1: ord(a) = r is even with proba. 1/2

2. Fact: (ar/2 − 1)(ar/2 + 1) = 0 mod N

3. Assumption 2: ar/2 + 1 is not divisible by N for many a’s (CRT)

4. Under Assumption 1 and 2: d = gcd(ar/2 − 1,N) and

d ′ = gcd(ar/2 + 1,N) are non-trivial factors of N

a=2 (a,N) = 1 r = 4, 24 = 16 = 1 mod 15 (24/2 − 1, 15) = 3

a=3 no

a=11 (a,N) = 1 r = 2, 112 = 121 = 1 mod 15 (112/2 − 1, 15) = 5

28

Arithmetic

• (Z/NZ)∗ multiplicative group of invertible elements, not cyclic !

• order of a: smallest positive integer r s.t. ar = 1 mod N

• r |φ(N) Lagrange Theorem in the group (Z/NZ)∗

• r is the smallest period of the function f : k 7→ ak mod N

Assumptions

1. Assumption 1: ord(a) = r is even with proba. 1/2

2. Fact: (ar/2 − 1)(ar/2 + 1) = 0 mod N

3. Assumption 2: ar/2 + 1 is not divisible by N for many a’s (CRT)

4. Under Assumption 1 and 2: d = gcd(ar/2 − 1,N) and

d ′ = gcd(ar/2 + 1,N) are non-trivial factors of N

a=2 (a,N) = 1 r = 4, 24 = 16 = 1 mod 15 (24/2 − 1, 15) = 3

a=3 no

a=11 (a,N) = 1 r = 2, 112 = 121 = 1 mod 15 (112/2 − 1, 15) = 5 28

Order and Oracle

• order of a: smallest positive integer r s.t. ar = 1 mod N

• r |φ(N) Lagrange Theorem in the group (Z/NZ)∗

• r is the smallest period of the function f : k 7→ ak mod N

• Oracle F : (k, 0) 7→ (k , ak mod N)

• E.g. N = 15 and a = 2, r = 4

(0, 0)
F7→ (0, 1) (4, 0)

F7→ (4, 1) (8, 0)
F7→ (8, 1) (12, 0)

F7→ (12, 1)

(1, 0)
F7→ (1, 2) (5, 0)

F7→ (5, 2) (9, 0)
F7→ (9, 2) (13, 0)

F7→ (13, 2)

(2, 0)
F7→ (2, 4) (6, 0)

F7→ (6, 4) (10, 0)
F7→ (10, 4) (14, 0)

F7→ (14, 4)

(3, 0)
F7→ (3, 8) (7, 0)

F7→ (7, 8) (11, 0)
F7→ (11, 8) (15, 0)

F7→ (15, 8)

29

Order and Oracle

• order of a: smallest positive integer r s.t. ar = 1 mod N

• r |φ(N) Lagrange Theorem in the group (Z/NZ)∗

• r is the smallest period of the function f : k 7→ ak mod N

• Oracle F : (k, 0) 7→ (k , ak mod N)

• E.g. N = 15 and a = 2, r = 4

(0, 0)
F7→ (0, 1) (4, 0)

F7→ (4, 1) (8, 0)
F7→ (8, 1) (12, 0)

F7→ (12, 1)

(1, 0)
F7→ (1, 2) (5, 0)

F7→ (5, 2) (9, 0)
F7→ (9, 2) (13, 0)

F7→ (13, 2)

(2, 0)
F7→ (2, 4) (6, 0)

F7→ (6, 4) (10, 0)
F7→ (10, 4) (14, 0)

F7→ (14, 4)

(3, 0)
F7→ (3, 8) (7, 0)

F7→ (7, 8) (11, 0)
F7→ (11, 8) (15, 0)

F7→ (15, 8)

29

Oracle Circuit 2n ≥ N

The oracle is composed of 2 registers: the first receives the integer k in

binary with n bits, and the second, 0 on n bits. We write |k⟩ the register

containing k written in binary. For instance, |0⟩ = |0. . . . 0⟩ with n bits.

The initial state is |k⟩ ⊗ |0⟩.

•

k0 k0

...
...

kn−1 kn−1

0

...
...

0

First register k

Of

k

Second register ak mod N

30

Starting the Circuit 2n ≥ N

• Initialization: |ψ0⟩ = |0⟩ ⊗ |0⟩.
• Hadamard: |ψ1⟩ = H⊗n(|0⟩)⊗ |0⟩ =

(
1√
2n

∑2n−1
k=0 |k⟩

)
⊗ |0⟩

• Oracle: |ψ2⟩ = 1
2n/2

∑2n−1
k=0 |k⟩ ⊗

∣∣ak〉
|0⟩

...
...

|0⟩

|0⟩

...

|0⟩

First register

H

Of

∣∣ψ̄3

〉
after partial

measurement

H

Second register
measure of the

second register

ψ0 ψ1 ψ2

31

Using the period to rewrite |ψ2⟩

• Assumption 3: ord(a) = r |2n. This assumption is not true, and can

be removed (see later)

• Under Assumption 3: k = αr + β with 0 ≤ β < r and 0 ≤ α < 2n/r ,

|ψ2⟩ =
2n−1∑
k=0

|k⟩ ⊗
∣∣ak〉 = r−1∑

β=0

(
2n/r−1∑
α=0

∣∣αr + β
〉)

⊗
∣∣aβ〉

• If we measure the second register, we get for a fixed β0,

|ψ3⟩ =
2n/r−1∑
α=0

|αr + β0⟩ ⊗
∣∣aβ0

〉
• Assume we measure the first register, |α0r + β0⟩ for fixed α0 and β0

• If we redo the computation, we will not the same β0,

• We cannot do many measures of the first register ...

32

Using the period to rewrite |ψ2⟩

• Assumption 3: ord(a) = r |2n. This assumption is not true, and can

be removed (see later)

• Under Assumption 3: k = αr + β with 0 ≤ β < r and 0 ≤ α < 2n/r ,

|ψ2⟩ =
2n−1∑
k=0

|k⟩ ⊗
∣∣ak〉 = r−1∑

β=0

(
2n/r−1∑
α=0

∣∣αr + β
〉)

⊗
∣∣aβ〉

• If we measure the second register, we get for a fixed β0,

|ψ3⟩ =
2n/r−1∑
α=0

|αr + β0⟩ ⊗
∣∣aβ0

〉

• Assume we measure the first register, |α0r + β0⟩ for fixed α0 and β0

• If we redo the computation, we will not the same β0,

• We cannot do many measures of the first register ...

32

Using the period to rewrite |ψ2⟩

• Assumption 3: ord(a) = r |2n. This assumption is not true, and can

be removed (see later)

• Under Assumption 3: k = αr + β with 0 ≤ β < r and 0 ≤ α < 2n/r ,

|ψ2⟩ =
2n−1∑
k=0

|k⟩ ⊗
∣∣ak〉 = r−1∑

β=0

(
2n/r−1∑
α=0

∣∣αr + β
〉)

⊗
∣∣aβ〉

• If we measure the second register, we get for a fixed β0,

|ψ3⟩ =
2n/r−1∑
α=0

|αr + β0⟩ ⊗
∣∣aβ0

〉
• Assume we measure the first register, |α0r + β0⟩ for fixed α0 and β0

• If we redo the computation, we will not the same β0,

• We cannot do many measures of the first register ...

32

Example N = 15, a = 2

• |ψ0⟩ = |0⟩ ⊗ |0⟩
• Hadamard Transform: |ψ1⟩ = (|0⟩+ |1⟩+ . . .+ |15⟩)⊗ |0⟩
• Oracle: |ψ2⟩ = |0⟩ .

∣∣a0〉+ |1⟩ .
∣∣a1〉+ . . .+ |15⟩ .

∣∣a15〉

• Since r = 4|24 = 16, the values form a rectangular table

|ψ2⟩ =
(
|0⟩+ |4⟩+ |8⟩+ |12⟩

)
. |1⟩+(

|1⟩+ |5⟩+ |9⟩+ |13⟩
)
. |2⟩+(

|2⟩+ |6⟩+ |10⟩+ |14⟩
)
. |4⟩+(

|3⟩+ |7⟩+ |11⟩+ |15⟩
)
. |8⟩

• If we measure the second register, |4⟩, the first register is∣∣∣ψ̃3

〉
= |2⟩+ |6⟩+ |10⟩+ |14⟩

• They are separated by the period r = 4, but how can we recover r ?

33

Example N = 15, a = 2

• |ψ0⟩ = |0⟩ ⊗ |0⟩
• Hadamard Transform: |ψ1⟩ = (|0⟩+ |1⟩+ . . .+ |15⟩)⊗ |0⟩
• Oracle: |ψ2⟩ = |0⟩ .

∣∣a0〉+ |1⟩ .
∣∣a1〉+ . . .+ |15⟩ .

∣∣a15〉
• Since r = 4|24 = 16, the values form a rectangular table

|ψ2⟩ =
(
|0⟩+ |4⟩+ |8⟩+ |12⟩

)
. |1⟩+(

|1⟩+ |5⟩+ |9⟩+ |13⟩
)
. |2⟩+(

|2⟩+ |6⟩+ |10⟩+ |14⟩
)
. |4⟩+(

|3⟩+ |7⟩+ |11⟩+ |15⟩
)
. |8⟩

• If we measure the second register, |4⟩, the first register is∣∣∣ψ̃3

〉
= |2⟩+ |6⟩+ |10⟩+ |14⟩

• They are separated by the period r = 4, but how can we recover r ?
33

Discrete Fourier Transform

Complex numbers

•

1 + z + . . .+ zn−1 =

{
n if z = 1
1−zn

1−z otherwise.

• Crucial Lemma: n > 0, j ∈ Z,

1

n

n−1∑
k=0

e2iπ
kj
n =

{
1 if j

n is an integer

0 otherwise.

Discrete Fourier Transform and Inverse

F̂ |k⟩ = 1√
2n

2n−1∑
j=0

e2iπ
kj
2n
∣∣j〉 and F̂−1 |k⟩ = 1√

2n

2n−1∑
j=0

e−2iπ kj
2n
∣∣j〉

The Discrete Fourier Transform is Linear and Unitary

If |ψ⟩ =
2n−1∑
k=0

αk |k⟩ , then F̂ |ψ⟩ =
2n−1∑
k=0

αk F̂ |k⟩

34

Discrete Fourier Transform

Complex numbers

•

1 + z + . . .+ zn−1 =

{
n if z = 1
1−zn

1−z otherwise.

• Crucial Lemma: n > 0, j ∈ Z,

1

n

n−1∑
k=0

e2iπ
kj
n =

{
1 if j

n is an integer

0 otherwise.

Discrete Fourier Transform and Inverse

F̂ |k⟩ = 1√
2n

2n−1∑
j=0

e2iπ
kj
2n
∣∣j〉 and F̂−1 |k⟩ = 1√

2n

2n−1∑
j=0

e−2iπ kj
2n
∣∣j〉

The Discrete Fourier Transform is Linear and Unitary

If |ψ⟩ =
2n−1∑
k=0

αk |k⟩ , then F̂ |ψ⟩ =
2n−1∑
k=0

αk F̂ |k⟩

34

Discrete Fourier Transform

Complex numbers

•

1 + z + . . .+ zn−1 =

{
n if z = 1
1−zn

1−z otherwise.

• Crucial Lemma: n > 0, j ∈ Z,

1

n

n−1∑
k=0

e2iπ
kj
n =

{
1 if j

n is an integer

0 otherwise.

Discrete Fourier Transform and Inverse

F̂ |k⟩ = 1√
2n

2n−1∑
j=0

e2iπ
kj
2n
∣∣j〉 and F̂−1 |k⟩ = 1√

2n

2n−1∑
j=0

e−2iπ kj
2n
∣∣j〉

The Discrete Fourier Transform is Linear and Unitary

If |ψ⟩ =
2n−1∑
k=0

αk |k⟩ , then F̂ |ψ⟩ =
2n−1∑
k=0

αk F̂ |k⟩
34

Shor Circuit

• Initialization: |ψ0⟩ = |0⟩ ⊗ |0⟩.

• Hadamard: |ψ1⟩ = H⊗n(|0⟩)⊗ |0⟩ =
(

1√
2n

∑2n−1
k=0 |k⟩

)
⊗ |0⟩

• Oracle: |ψ2⟩ = 1
2n/2

∑2n−1
k=0 |k⟩ ⊗

∣∣ak〉
n n n

n n n

|0⟩

|0⟩

H⊗n

Of

F̂−1

• Measure of the first register:
∣∣∣ 2nℓr 〉

• Allows (often) to get r (or a factor of r)

35

Computation

• After measuring the second register
∣∣ψ̄3

〉
=
∑2n/r−1

α=0

∣∣αr + β0
〉

• Action of F̂−1:

∣∣ψ̄4

〉
= F̂−1

∣∣∣ψ̂3

〉
=

2n/r−1∑
α=0

F̂−1
∣∣αr + β0

〉

=
∑
α

2n−1∑
j=0

e−
2iπ(αr+β0)j

2n
∣∣j〉 =∑

j

0 or 1︷ ︸︸ ︷(∑
α

e−2iπ αj
2n/r

)
e−2iπ

β0 j
2n
∣∣j〉

=
∑

j with j/(2n/r) integer

e−2iπ
β0 j
2n |j⟩ =

r−1∑
ℓ=0

e−2iπβ0
ℓ
r

∣∣∣∣2nℓr
〉

• Measure the first register:
∣∣∣ 2nℓr 〉, for ℓ ∈ {0, 1, . . . , r − 1}

• We get m = 2nℓ
r for one of the states

∣∣∣ 2nℓr 〉

36

Computation

• After measuring the second register
∣∣ψ̄3

〉
=
∑2n/r−1

α=0

∣∣αr + β0
〉

• Action of F̂−1:

∣∣ψ̄4

〉
= F̂−1

∣∣∣ψ̂3

〉
=

2n/r−1∑
α=0

F̂−1
∣∣αr + β0

〉

=
∑
α

2n−1∑
j=0

e−
2iπ(αr+β0)j

2n
∣∣j〉 =∑

j

0 or 1︷ ︸︸ ︷(∑
α

e−2iπ αj
2n/r

)
e−2iπ

β0 j
2n
∣∣j〉

=
∑

j with j/(2n/r) integer

e−2iπ
β0 j
2n |j⟩ =

r−1∑
ℓ=0

e−2iπβ0
ℓ
r

∣∣∣∣2nℓr
〉

• Measure the first register:
∣∣∣ 2nℓr 〉, for ℓ ∈ {0, 1, . . . , r − 1}

• We get m = 2nℓ
r for one of the states

∣∣∣ 2nℓr 〉

36

Computation

• After measuring the second register
∣∣ψ̄3

〉
=
∑2n/r−1

α=0

∣∣αr + β0
〉

• Action of F̂−1:

∣∣ψ̄4

〉
= F̂−1

∣∣∣ψ̂3

〉
=

2n/r−1∑
α=0

F̂−1
∣∣αr + β0

〉

=
∑
α

2n−1∑
j=0

e−
2iπ(αr+β0)j

2n
∣∣j〉 =∑

j

0 or 1︷ ︸︸ ︷(∑
α

e−2iπ αj
2n/r

)
e−2iπ

β0 j
2n
∣∣j〉

=
∑

j with j/(2n/r) integer

e−2iπ
β0 j
2n |j⟩ =

r−1∑
ℓ=0

e−2iπβ0
ℓ
r

∣∣∣∣2nℓr
〉

• Measure the first register:
∣∣∣ 2nℓr 〉, for ℓ ∈ {0, 1, . . . , r − 1}

• We get m = 2nℓ
r for one of the states

∣∣∣ 2nℓr 〉 36

Measure the first register

m = 2nℓ
r integer with n known and ℓ unknown

• Divide m by 2n to obtain the rational x = m
2n = ℓ

r

• If x ∈ Z, we get no information on r , and we redo the quantum

circuit

• If gcd(ℓ, r) = 1, then ℓ
r is irreducible and we get r .

• If gcd(ℓ, r) ̸= 1, then x = m
2n = ℓ′

r ′ =
ℓ
r and we get r ′ a factor of r .

We redo the computation with a′ = ar
′
which is of period r/r ′.

37

Implementation of the oracle

Reduce exponentiation to controlled multi-product modulo N:

f (x) = ax =
∏
i

(
a2

i)xi =∏
i

(
ai
)xi mod N, where ai = a2

i

mod N

The constants ai are precomputed:

• Asymptotic best: O(n × (n log n)) operations

• Typical: O(n × (n2)) operations

38

Shor for any even order

Up to now..

• If r |2n, measuring
∣∣∣ 2nℓr 〉 gives an integer m = 2nℓ

r and x = m
2n = ℓ

r

which allows to recover r or a factor

• As r |2n, m is a multiple of 2n

r and x is a multiple of 1
r

Now...

• If r ∤ 2n, the measurement gives an integer m which is close to 2nℓ
r ,

but 2nℓ
r is not any more an integer ...

• The rational x = m
2n is close to a multiple of 1

r but not an exact

multiple...

39

Shor for any even order

Up to now..

• If r |2n, measuring
∣∣∣ 2nℓr 〉 gives an integer m = 2nℓ

r and x = m
2n = ℓ

r

which allows to recover r or a factor

• As r |2n, m is a multiple of 2n

r and x is a multiple of 1
r

Now...

• If r ∤ 2n, the measurement gives an integer m which is close to 2nℓ
r ,

but 2nℓ
r is not any more an integer ...

• The rational x = m
2n is close to a multiple of 1

r but not an exact

multiple...

39

Continued Fractions

Definition

• a0 +
1

a1+
1

a2+
1

...+ 1
an

, noted [a0, a1, . . . , an]

• E.g., [5, 2, 1, 4] = 5 + 1
2+ 1

1+ 1
4

= 5.3571428 . . .

• [5] = 5, [5, 2] = 11
2 = 5.5, [5, 2, 1] = 16

3 = 5.33 . . .

Good Approximation by continued fractions

• π = 3.14159 . . . ≈ 314
100 (denominator is large)

• 314
100 = 3 + 14

100 = 3 + 1
100
14

= 3 + 1
7+ 2

14

= 3 + 1
7+ 1

7

= [3, 7, 7]

• [3, 7] = 3 + 1
7 = 22

7 = 3.1428

• [3, 7, 15, 1] = 355
113 = 3.14159292 . . . (same order with 6 exact values

instead of 2)

40

Continued Fractions

Definition

• a0 +
1

a1+
1

a2+
1

...+ 1
an

, noted [a0, a1, . . . , an]

• E.g., [5, 2, 1, 4] = 5 + 1
2+ 1

1+ 1
4

= 5.3571428 . . .

• [5] = 5, [5, 2] = 11
2 = 5.5, [5, 2, 1] = 16

3 = 5.33 . . .

Good Approximation by continued fractions

• π = 3.14159 . . . ≈ 314
100 (denominator is large)

• 314
100 = 3 + 14

100 = 3 + 1
100
14

= 3 + 1
7+ 2

14

= 3 + 1
7+ 1

7

= [3, 7, 7]

• [3, 7] = 3 + 1
7 = 22

7 = 3.1428

• [3, 7, 15, 1] = 355
113 = 3.14159292 . . . (same order with 6 exact values

instead of 2)

40

Example Shor with N = 21

• N = 21, a = 2, 2n = 512 = 29

• Circuit outputs |427⟩, so x = 427
512

• 427
512 ≈ 4

5 so order 5 ??

• 427
512 = [0, 1, 5, 42, 2] and [0, 1] = 1, [0, 1, 5] = 5

6 , [0, 1, 5, 42] =
211
253

• We keep the best fraction whose denominator is ≤ N and it gives r

or a fraction of r

Shor algorithm with arbitrary order

• N = 21, a = 2, 2n = 512 = 29 ≥ N2

• |ψ0⟩ = |0⟩ ⊗ |0⟩
• |ψ1⟩ =

∑r−1
k=0 |k⟩ ⊗ |0⟩

• |ψ2⟩ =
∑r−1

k=0 |k⟩ ⊗
∣∣ak mod N

〉
• r = 6 and 2nℓ

r ̸∈ Z

41

Example Shor with N = 21

• N = 21, a = 2, 2n = 512 = 29

• Circuit outputs |427⟩, so x = 427
512

• 427
512 ≈ 4

5 so order 5 ??

• 427
512 = [0, 1, 5, 42, 2] and [0, 1] = 1, [0, 1, 5] = 5

6 , [0, 1, 5, 42] =
211
253

• We keep the best fraction whose denominator is ≤ N and it gives r

or a fraction of r

Shor algorithm with arbitrary order

• N = 21, a = 2, 2n = 512 = 29 ≥ N2

• |ψ0⟩ = |0⟩ ⊗ |0⟩
• |ψ1⟩ =

∑r−1
k=0 |k⟩ ⊗ |0⟩

• |ψ2⟩ =
∑r−1

k=0 |k⟩ ⊗
∣∣ak mod N

〉
• r = 6 and 2nℓ

r ̸∈ Z
41

Example

The first two lines have 86 terms and 85 in the others

• The state |ψ2⟩ is not rectangular:

|ψ2⟩ =
1√
512

(|0⟩+ |6⟩+ . . .+ |504⟩+ |510⟩) |1⟩

+
1√
512

(|1⟩+ |7⟩+ . . .+ |505⟩+ |511⟩) |2⟩

+
1√
512

(|2⟩+ |8⟩+ . . .+ |506⟩) |4⟩

+ . . .

+
1√
512

(|5⟩+ |11⟩+ . . .+ |509⟩) |11⟩

• measure the second register |2⟩: |ψ3⟩ = |1⟩+ |7⟩+ . . .+ |511⟩
• |ψ4⟩ = F̂−1 |ψ3⟩ =

∑85
α=0 F̂

−1 |6α+ 1⟩

• |ψ4⟩ =
∑511

j=0

(∑85
α=0 e

−2iπ 6αj
512

)
e−2iπ j

512

∣∣j〉

42

Example

The first two lines have 86 terms and 85 in the others

• The state |ψ2⟩ is not rectangular:

|ψ2⟩ =
1√
512

(|0⟩+ |6⟩+ . . .+ |504⟩+ |510⟩) |1⟩

+
1√
512

(|1⟩+ |7⟩+ . . .+ |505⟩+ |511⟩) |2⟩

+
1√
512

(|2⟩+ |8⟩+ . . .+ |506⟩) |4⟩

+ . . .

+
1√
512

(|5⟩+ |11⟩+ . . .+ |509⟩) |11⟩

• measure the second register |2⟩: |ψ3⟩ = |1⟩+ |7⟩+ . . .+ |511⟩
• |ψ4⟩ = F̂−1 |ψ3⟩ =

∑85
α=0 F̂

−1 |6α+ 1⟩

• |ψ4⟩ =
∑511

j=0

(∑85
α=0 e

−2iπ 6αj
512

)
e−2iπ j

512

∣∣j〉 42

Example Shor with arbitrary order

|ψ4⟩ = 1√
512

∑511
j=0

(
1√
86

∑85
α=0 e

−2iπ 6αj
512

)
e−2iπ j

512

∣∣j〉
Now, Σ(j) = 1√

86

∑85
α=0 e

−2iπ 6αj
512 does not take only 0 /1 values.

If we measure the first register, we get |j⟩ with probability |Σ(j)|2.

The proba. are ≈ 0, except when j ≈ 2nℓ
r : for ℓ = 5, 512×5

6 = 426.66.

43

Example Shor with arbitrary order

|ψ4⟩ = 1√
512

∑511
j=0

(
1√
86

∑85
α=0 e

−2iπ 6αj
512

)
e−2iπ j

512

∣∣j〉
Now, Σ(j) = 1√

86

∑85
α=0 e

−2iπ 6αj
512 does not take only 0 /1 values.

If we measure the first register, we get |j⟩ with probability |Σ(j)|2.

The proba. are ≈ 0, except when j ≈ 2nℓ
r : for ℓ = 5, 512×5

6 = 426.66.

43

Hardy-Wright Theorem

Theorem
Let x ∈ R and a rational p

q such that

∣∣x − p

q

∣∣ < 1

2q2
.

Then, p
q is obtained as one of the continued fractions of x .

Let m the closest integer to 2nℓ
r . So, |m − 2nℓ

r | < 1
2 .

If x = m
2n , we get |x − ℓ

r | <
1

2n+1 .

As we set 2n ≥ N2 ≥ r2, |x − ℓ
r | <

1
2r2 .

Using Theorem, we obtain ℓ
r as one of the continued fractions of x .

44

Hardy-Wright Theorem

Theorem
Let x ∈ R and a rational p

q such that

∣∣x − p

q

∣∣ < 1

2q2
.

Then, p
q is obtained as one of the continued fractions of x .

Let m the closest integer to 2nℓ
r . So, |m − 2nℓ

r | < 1
2 .

If x = m
2n , we get |x − ℓ

r | <
1

2n+1 .

As we set 2n ≥ N2 ≥ r2, |x − ℓ
r | <

1
2r2 .

Using Theorem, we obtain ℓ
r as one of the continued fractions of x .

44

Between 1996 and 2020

Generalization

• HSP (Hidden Subgroup Problem): Let G a group and H a

subgroup. The function f is constant on each coset of H, find H

• Shor and Simon algorithms: special case of HSP

• Kitaev: any Abelian Group G

• Non-abelian: Kuperberg subexponential algo. for Dihedral HSP

• LWE (learning with errors problems) can be reduced to (stronger

version) Dihedral HSP (with errors)

45

Between 1996 and 2020

Generalization

• HSP (Hidden Subgroup Problem): Let G a group and H a

subgroup. The function f is constant on each coset of H, find H

• Shor and Simon algorithms: special case of HSP

• Kitaev: any Abelian Group G

• Non-abelian: Kuperberg subexponential algo. for Dihedral HSP

• LWE (learning with errors problems) can be reduced to (stronger

version) Dihedral HSP (with errors)

45

Between 1996 and 2020

Generalization

• HSP (Hidden Subgroup Problem): Let G a group and H a

subgroup. The function f is constant on each coset of H, find H

• Shor and Simon algorithms: special case of HSP

• Kitaev: any Abelian Group G

• Non-abelian: Kuperberg subexponential algo. for Dihedral HSP

• LWE (learning with errors problems) can be reduced to (stronger

version) Dihedral HSP (with errors)

45

Between 1996 and 2020

Generalization

• HSP (Hidden Subgroup Problem): Let G a group and H a

subgroup. The function f is constant on each coset of H, find H

• Shor and Simon algorithms: special case of HSP

• Kitaev: any Abelian Group G

• Non-abelian: Kuperberg subexponential algo. for Dihedral HSP

• LWE (learning with errors problems) can be reduced to (stronger

version) Dihedral HSP (with errors)

45

Between 1996 and 2020

Generalization

• HSP (Hidden Subgroup Problem): Let G a group and H a

subgroup. The function f is constant on each coset of H, find H

• Shor and Simon algorithms: special case of HSP

• Kitaev: any Abelian Group G

• Non-abelian: Kuperberg subexponential algo. for Dihedral HSP

• LWE (learning with errors problems) can be reduced to (stronger

version) Dihedral HSP (with errors)

45

Between 1996 and 2020

Generalization

• HSP (Hidden Subgroup Problem): Let G a group and H a

subgroup. The function f is constant on each coset of H, find H

• Shor and Simon algorithms: special case of HSP

• Kitaev: any Abelian Group G

• Non-abelian: Kuperberg subexponential algo. for Dihedral HSP

• LWE (learning with errors problems) can be reduced to (stronger

version) Dihedral HSP (with errors)

45

New recent results on factorization

• Shor algorithm: 3n qubits and O(n2) gates

• Regev algorithm: O(n3/2) qubits and O(n3/2) gates, runs n1/2

• Pilatte removes mathematical assumptions in Regev algorithm

• Ragavan-Vaikuntanathan (C’24): 10n qubits and O(n3/2) gates,

runs n1/2

• n/2 + o(n) qubits and O(n2) gates, runs constants [CFS25]

46

New recent results on factorization

• Shor algorithm: 3n qubits and O(n2) gates

• Regev algorithm: O(n3/2) qubits and O(n3/2) gates, runs n1/2

• Pilatte removes mathematical assumptions in Regev algorithm

• Ragavan-Vaikuntanathan (C’24): 10n qubits and O(n3/2) gates,

runs n1/2

• n/2 + o(n) qubits and O(n2) gates, runs constants [CFS25]

46

New recent results on factorization

• Shor algorithm: 3n qubits and O(n2) gates

• Regev algorithm: O(n3/2) qubits and O(n3/2) gates, runs n1/2

• Pilatte removes mathematical assumptions in Regev algorithm

• Ragavan-Vaikuntanathan (C’24): 10n qubits and O(n3/2) gates,

runs n1/2

• n/2 + o(n) qubits and O(n2) gates, runs constants [CFS25]

46

New recent results on factorization

• Shor algorithm: 3n qubits and O(n2) gates

• Regev algorithm: O(n3/2) qubits and O(n3/2) gates, runs n1/2

• Pilatte removes mathematical assumptions in Regev algorithm

• Ragavan-Vaikuntanathan (C’24): 10n qubits and O(n3/2) gates,

runs n1/2

• n/2 + o(n) qubits and O(n2) gates, runs constants [CFS25]

46

New recent results on factorization

• Shor algorithm: 3n qubits and O(n2) gates

• Regev algorithm: O(n3/2) qubits and O(n3/2) gates, runs n1/2

• Pilatte removes mathematical assumptions in Regev algorithm

• Ragavan-Vaikuntanathan (C’24): 10n qubits and O(n3/2) gates,

runs n1/2

• n/2 + o(n) qubits and O(n2) gates, runs constants [CFS25]

46

Reducing the number of qubits

New algorithm1

• Factoring RSA moduli using n/2 + o(n) qubits and O(n3) gates

• For RSA-2048: ≤ 1700 qubits and ≤ 60× 236 Toffoli gates (60 runs)

• Based on a completely classical arithmetic circuit

• Gidney reduces: qubits down to 1399 logical qubits by computing

the MSB rather than the LSB, 232 Toffoli gates as previous counting

and 9.2 runs, and update estimates at the physical level

Gidney latest result

1CFS, CRYPTO 2025, “Reducing the Number of Qubits in Quantum Factoring”

47

New algorithm1

• Factoring RSA moduli using n/2 + o(n) qubits and O(n3) gates

• For RSA-2048: ≤ 1700 qubits and ≤ 60× 236 Toffoli gates (60 runs)

• Based on a completely classical arithmetic circuit

• Gidney reduces: qubits down to 1399 logical qubits by computing

the MSB rather than the LSB, 232 Toffoli gates as previous counting

and 9.2 runs, and update estimates at the physical level

Gidney latest result

1CFS, CRYPTO 2025, “Reducing the Number of Qubits in Quantum Factoring”

47

Discrete logarithm and RSA special case

Find d s.t. a = gd :

f (x , y) := g xa−y = g x−dy mod N

• Also a hidden period problem: f (x + d , y + 1) = f (x , y)

• Also reduces to controlled multi-product

Eker̊a & Håstad method2:

• Reduce RSA factorisation (N = pq) to small DLOG of size n/2: if

we recover p + q, we can factor N

• Use an input register of size n/2 + (n/2)/s for some s

• ≈ s + 1 measurements to find d via an efficient lattice-based

post-processing. Typically s = O(log n).

Space is reduced to: n/2 +workspace

2Eker̊a, Håstad, “Quantum algorithms for computing short discrete logarithms and

factoring RSA integers, PQCrypto 2017”

48

Discrete logarithm and RSA special case

Find d s.t. a = gd : f (x , y) := g xa−y = g x−dy mod N

• Also a hidden period problem: f (x + d , y + 1) = f (x , y)

• Also reduces to controlled multi-product

Eker̊a & Håstad method2:

• Reduce RSA factorisation (N = pq) to small DLOG of size n/2: if

we recover p + q, we can factor N

• Use an input register of size n/2 + (n/2)/s for some s

• ≈ s + 1 measurements to find d via an efficient lattice-based

post-processing. Typically s = O(log n).

Space is reduced to: n/2 +workspace

2Eker̊a, Håstad, “Quantum algorithms for computing short discrete logarithms and

factoring RSA integers, PQCrypto 2017”

48

Discrete logarithm and RSA special case

Find d s.t. a = gd : f (x , y) := g xa−y = g x−dy mod N

• Also a hidden period problem: f (x + d , y + 1) = f (x , y)

• Also reduces to controlled multi-product

Eker̊a & Håstad method2:

• Reduce RSA factorisation (N = pq) to small DLOG of size n/2: if

we recover p + q, we can factor N

• Use an input register of size n/2 + (n/2)/s for some s

• ≈ s + 1 measurements to find d via an efficient lattice-based

post-processing. Typically s = O(log n).

Space is reduced to: n/2 +workspace

2Eker̊a, Håstad, “Quantum algorithms for computing short discrete logarithms and

factoring RSA integers, PQCrypto 2017”

48

Variant Shor’s algorithm

Ideas

• Once p + q is known, using N = pq, recover p is easy

• G = ⟨g⟩ a cyclic subgroup of (Z/NZ)∗ of order > (p + q − 2)/2

• Compute x = g (N−1)/2 = g (p+q−2)/2 mod N since

(N − φ(N)− 1)/2 = (p + q − 2)/2 as φ(N) = N − p − q + 1

• Compute short discrete logarithm d = (p + q − 2)/2 from g and x

• Get many pairs (j , k) s.t. k is the ℓ most significant bits of

dj mod 2m: Hidden Number Problem (HNP)

• May, Schlieper3: we can replace f by h ◦ f where h is a universal

hash function is still periodic

• How to compute some bits of ak mod N mod 2r with o(log n) extra

space using RNS

3“Quantum period-finding is compression robust”

49

Variant Shor’s algorithm

Ideas

• Once p + q is known, using N = pq, recover p is easy

• G = ⟨g⟩ a cyclic subgroup of (Z/NZ)∗ of order > (p + q − 2)/2

• Compute x = g (N−1)/2 = g (p+q−2)/2 mod N since

(N − φ(N)− 1)/2 = (p + q − 2)/2 as φ(N) = N − p − q + 1

• Compute short discrete logarithm d = (p + q − 2)/2 from g and x

• Get many pairs (j , k) s.t. k is the ℓ most significant bits of

dj mod 2m: Hidden Number Problem (HNP)

• May, Schlieper3: we can replace f by h ◦ f where h is a universal

hash function is still periodic

• How to compute some bits of ak mod N mod 2r with o(log n) extra

space using RNS

3“Quantum period-finding is compression robust”

49

Variant Shor’s algorithm

Ideas

• Once p + q is known, using N = pq, recover p is easy

• G = ⟨g⟩ a cyclic subgroup of (Z/NZ)∗ of order > (p + q − 2)/2

• Compute x = g (N−1)/2 = g (p+q−2)/2 mod N since

(N − φ(N)− 1)/2 = (p + q − 2)/2 as φ(N) = N − p − q + 1

• Compute short discrete logarithm d = (p + q − 2)/2 from g and x

• Get many pairs (j , k) s.t. k is the ℓ most significant bits of

dj mod 2m: Hidden Number Problem (HNP)

• May, Schlieper3: we can replace f by h ◦ f where h is a universal

hash function is still periodic

• How to compute some bits of ak mod N mod 2r with o(log n) extra

space using RNS

3“Quantum period-finding is compression robust”

49

Variant Shor’s algorithm

Ideas

• Once p + q is known, using N = pq, recover p is easy

• G = ⟨g⟩ a cyclic subgroup of (Z/NZ)∗ of order > (p + q − 2)/2

• Compute x = g (N−1)/2 = g (p+q−2)/2 mod N since

(N − φ(N)− 1)/2 = (p + q − 2)/2 as φ(N) = N − p − q + 1

• Compute short discrete logarithm d = (p + q − 2)/2 from g and x

• Get many pairs (j , k) s.t. k is the ℓ most significant bits of

dj mod 2m: Hidden Number Problem (HNP)

• May, Schlieper3: we can replace f by h ◦ f where h is a universal

hash function is still periodic

• How to compute some bits of ak mod N mod 2r with o(log n) extra

space using RNS

3“Quantum period-finding is compression robust”

49

Variant Shor’s algorithm

Ideas

• Once p + q is known, using N = pq, recover p is easy

• G = ⟨g⟩ a cyclic subgroup of (Z/NZ)∗ of order > (p + q − 2)/2

• Compute x = g (N−1)/2 = g (p+q−2)/2 mod N since

(N − φ(N)− 1)/2 = (p + q − 2)/2 as φ(N) = N − p − q + 1

• Compute short discrete logarithm d = (p + q − 2)/2 from g and x

• Get many pairs (j , k) s.t. k is the ℓ most significant bits of

dj mod 2m: Hidden Number Problem (HNP)

• May, Schlieper3: we can replace f by h ◦ f where h is a universal

hash function is still periodic

• How to compute some bits of ak mod N mod 2r with o(log n) extra

space using RNS

3“Quantum period-finding is compression robust”

49

Conclusion

• To break RSA-2048, 1400 logical qubits are needed

• For DLP and small discrete log or Schnorr-like mechanisms, 300

logical qubits are needed (safe prime p of 1024 bits)

• For ECDLP, 2124 qubits for 256-bit [HJNRS20], ... and seems to be

more complicate than factoring

• but stay tune, many new results are coming

50

Conclusion

• To break RSA-2048, 1400 logical qubits are needed

• For DLP and small discrete log or Schnorr-like mechanisms, 300

logical qubits are needed (safe prime p of 1024 bits)

• For ECDLP, 2124 qubits for 256-bit [HJNRS20], ... and seems to be

more complicate than factoring

• but stay tune, many new results are coming

50

Conclusion

• To break RSA-2048, 1400 logical qubits are needed

• For DLP and small discrete log or Schnorr-like mechanisms, 300

logical qubits are needed (safe prime p of 1024 bits)

• For ECDLP, 2124 qubits for 256-bit [HJNRS20], ... and seems to be

more complicate than factoring

• but stay tune, many new results are coming

50

Conclusion

• To break RSA-2048, 1400 logical qubits are needed

• For DLP and small discrete log or Schnorr-like mechanisms, 300

logical qubits are needed (safe prime p of 1024 bits)

• For ECDLP, 2124 qubits for 256-bit [HJNRS20], ... and seems to be

more complicate than factoring

• but stay tune, many new results are coming

50

	Basic Quantum Information and Computation
	Basic Circuits: Deutsch-Jozsa and Simon algorithms
	Shor Algorithm
	Reducing the number of qubits

