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Side-channel Analysis

Timing

One of the earliest side-channel attacks due to easy
measurements collection.

Can also be exploited remotely.

Exploit some not foreseen effects of caches to crypto
implementations.

Applied to symmetric and asymmetric cryptography.
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Side-channel Analysis

Power Consumption

CMOS is one of the most popular technologies for chip design.

CMOS circuits exhibit several types of leakage.

Charge and discharge of the CMOS load capacitance leads to
side-channel leakage (dynamic power consumption).

Power analysis attack exploits the fact that the dynamic
power consumption depends on the data and instructions
being processed.

Dynamic power consumption is produced by CMOS
transitions from state 0 to 1 and from state 1 to 0.
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Side-channel Analysis

How to Model the Leakage

We use the number of transitions to model the leakage.

The Hamming distance model counts the number of 0 → 1
and 1 → 0 transitions.

Example 1: A register R is storing the result of an AES round
and initial value v0 gets overwritten with v1.

The power consumption because of the register transition
v0 → v1 is related to the number of bit flips that occurred.

Modeled as HammingDistance(v0, v1) =
HammingWeight(v0 ⊕ v1).

Common leakage model for hardware implementations
(FPGA, ASIC).
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How to Model the Leakage

Example 2: In a microcontroller, a register A contains value
v0 and an assembly instruction moves the content of register
A to B.

This instruction transfers v0 from A to B via the CPU, using
the bus.

Typically the bus is precharged at all bits being zeros or one
(busInitialValue).

The power consumption of the instruction can be modeled as
HammingDistance(busInitialValue, v0) =
HammingWeight(v0 ⊕ 0) = HW (v0).

Common leakage model for software implementations
(AVR/ARM).

10 / 129



A Deep Dive into Deep Learning-based Side-channel Analysis

Side-channel Analysis

How to Model the Leakage

11 / 129



A Deep Dive into Deep Learning-based Side-channel Analysis

Side-channel Analysis

Measurement Setup

12 / 129



A Deep Dive into Deep Learning-based Side-channel Analysis

Side-channel Analysis

EM Side Channel: Probing

Observing a power signal in more complex systems can be
messy.

Complicated SoCs with multiple peripherals.

Countermeasures trying to flatten the power consumption
signal.

Use an electromagnetic probe instead.

A probe is used to access the power consumption with less
board modifications.

Smaller probes can focus on interesting locations and ignore
interference from unrelated electrical components.
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Side-channel Analysis

EM Side Channel: Decapsulation and Microprobing

To improve spatial resolution of analysis use a
micrometer-sized antenna.

To exploit more leakage decapsulate the chip using chemicals.

EM enables side-channel attacks both in high proximity
scenarios and distance scenarios.

The main side channel for SoCs, FPGAs, contactless cards
due to their complexity and communication methods.
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Side-channel Analysis

Optical Emission

Accessing the chip SRAM cells emits photons that can be
detected by a high-resolution camera.

Visual inspection can reveal the memory location accessed.

The memory location maps to a specific value (e.g., in the
AES LUT), i.e., it maps directly to Sbox(in ⊕ key).

Since the input in is known, knowledge of the memory
location reveals the key.
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Sound Emission

Attacking a CPU by listening to the high-pitched (10 to 150
KHz) sounds produced as it decrypts data.
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Side-channel Analysis

Cryptographic Theory vs Physical Reality

Cryptographic algorithms are (supposed to be) theoretically
secure.

Implementations leak in physical world.
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Side-channel Analysis

Implementation Attack Categories

Side-channel attacks.

Faults.

Microprobing.
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Side-channel Analysis

Taxonomy of Implementation Attacks

Active vs passive.

Active:

1 Active: the key is recovered by exploiting some abnormal
behavior.

2 Insertion of signals.

Passive:

1 The device operates within its specifications.
2 Reading hidden signals.
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Implementation Attacks

Implementation attacks

Implementation attacks do not aim at the weaknesses of the
algorithm, but on its implementation.

Side-channel attacks (SCAs) are passive, non-invasive
attacks.

SCAs represent one of the most powerful category of attacks
on crypto devices.
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Side-channel Analysis

Examples of Implementation Attacks

KeeLoq: eavesdropping from up to 100 m.

PS3 hack due to ECDSA implementation failed.

Attacks on Mifare Classic, Atmel CryptoMemory.

Spectre and Meltdown.

Google Titan.

EUCLEAK.
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Side-channel Analysis

The Goals of Attackers

Secret data.

Location.

Reverse engineering.

Theoretical cryptanalysis.

. . .
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Physical Security in the Beginning

Tempest – already known in 1960s that computers generate
EM radiation that leaks information about the processed data.

1965: MI5 used a microphone positioned near the rotor
machine used by Egyptian embassy to deduce the positions of
rotors.

1996: first academic publication on SCA – timing.

1997: Bellcore attack.

1999: first publication of SCA – power.

2002: Template attack.

2016: Deep learning-based SCA.
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Side-channel Analysis

Analysis Capabilities

Direct attacks:

1 Simple side-channel analysis.
2 Differential side-channel analysis.
3 Higher order attacks.
4 . . .

Two-stage (profiling) attacks:

1 Template attack.
2 Stochastic models.
3 Machine learning-based attacks.
4 . . .
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Trade-offs and SCA

Implementation attacks are very powerful and realistic threat.

Many devices offer limited resources, which means there are
limited resources for countermeasures.

Optimizations can often open additional avenues for attacks.
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Side-channel Analysis

SCA Countermeasures

The aim is to destroy the link between intermediate values
and power consumption.

There are two main categories of countermeasures for SCA:

1 Masking.
2 Hiding.

Can be on any level, i.e., transistor level, program level,
algorithmic level, protocol level.
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Machine Learning-based Side-channel Analysis

Profiling Attacks

Profiling attacks have a prominent place as the most powerful
among side-channel attacks.

Within profiling phase the adversary estimates leakage models
for targeted intermediate computations, which are then
exploited to extract secret information in the actual attack
phase.

Template Attack (TA) is the most powerful attack from the
information theoretic point of view.

Some machine learning (ML) techniques also belong to the
profiling attacks.
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Profiling Attacks

Profiling attacks are more complicated than the direct attacks.

The attacker must have a copy of the device to be attacked.
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Machine Learning

Types of Machine Learning

Supervised learning.

Unsupervised learning.

Reinforcement learning.
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Machine Learning

Supervised Learning

Supervised learning - available data include information how
to correctly classify at least a part of data.

Common tasks are classification and regression.
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Machine Learning

Unsupervised Learning

Unsupervised learning - input data does not tell the algorithm
what the clusters should be.

Common tasks are clustering, density estimation, and
dimensionality reduction.
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Machine Learning

Reinforcement Learning

Take actions based on current knowledge of the environment.

Receive feedback in the form of rewards.

Learn based on received rewards and update behavior (policy)
in order to maximize the expected reward (utility).
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Machine Learning

Machine Learning Basic Components

Model.

Loss function.

Optimization procedure to minimize the empirical error.
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Machine Learning

Underfitting and Overfitting

Overfitting – if a model is too complex for the problem, then
it can learn the detail and noise in the training data so it
negatively impacts the performance of the model on new data
→ a model that models the training data too good.

Underfitting – if a model is too simple for the problem, then it
cannot generalize to new data.

Simple model → high bias.

Complex model → high variance.
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Machine Learning

Deep Learning

Stacked neural networks, i.e., networks consisting of multiple
layers.

Layers are made of nodes.

Figure: Perceptron.
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Machine Learning

Multilayer Perceptron

One input layer, one output layer, at least one hidden layer.

Figure: Multilayer perceptron.
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Machine Learning

Deep Learning

By adding more hidden layers, we arrive at deep learning.

Some definitions say everything more than one hidden layer is
deep learning.

A field existing for a number of years but one that gained
much attention in the last decade.

Sets of algorithms that attempt to model high-level
abstractions in data by using model architectures with
multiple processing layers, composed of a sequence of scalar
products and non-linear transformations.

In many tasks, deep learning is not necessary since machine
learning performs well.
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Machine Learning

Convolutional Neural Networks

CNNs represent a type of neural network first designed for
2-dimensional convolutions.

They are primarily used for image classification, but lately,
they have proven to be powerful classifiers in other domains.

From the operational perspective, CNNs are similar to
ordinary neural networks: they consist of a number of layers
where each layer is made up of neurons.

CNNs use three main types of layers: convolutional layers,
pooling layers, and fully-connected layers.
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Machine Learning

Convolutional Neural Networks - Convolution Layer

Convolutional layer: on this layer, during the forward computation
phase, the input data are convoluted with some filters. The output
of the convolution is commonly called a feature map. It shows
where the features detected by the filter can be found on the input
data.
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Machine Learning

CNN - Pooling

Max (average) pooling layer: sub-sampling layer. The feature map
is divided into regions and the output of this layer is the
concatenation of the maximum (average) values of all these
regions.
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Machine Learning

Activation Functions

Figure: Activation functions.
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Machine Learning

Backpropagation

A method used in artificial neural networks to calculate the
gradient needed for the calculations of weights in the network.

The calculation of the gradient proceeds backward through
the network: the gradient of the final layer of weights being
calculated first.

Steepest descent – an algorithm for finding the minimum of a
function.
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Machine Learning

Machine Learning Process Flow
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Machine Learning

For Beginners

A Practical Tutorial on Deep Learning-based Side-channel
Analysis

https://github.com/marinakrcek/DLSCA-tutorial
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Common Approaches

Hyperparameter Tuning

Hyperparameter tuning is extremely important.

Different algorithms have different hyperparameters.

Neural networks have many hyperparameters.

Random search.

Grid search.

Advanced techniques.

Methodologies.
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Common Approaches

Different Neural Network Types in SCA

Autoencoder.

Recurrent neural network.

Residual neural network.

Generative Adversarial Network.

Transformers.

. . .
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Common Approaches

More Complex Architectures

More complex architectures means more complex
hyperparameter tuning.
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Common Approaches

ML vs. SCA Metrics

Training process is assessed based on ML metrics while in the
attack phase we care about SCA metrics.

Does good ML performance mean good SCA performance?

How about poor ML performance?

Can we use SCA metrics in the training phase?
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Common Approaches

New Metrics

Key guessing vector: search success, guessing entropy
estimation algorithm (GEEA), Cross Entropy Ratio (CER),
comparing the success rate discrepancy on the
training/validation sets to judge the generalization capacity of
a model, area of hit, Label Correlation (LD), (simplified)
Leading Degree(LD).

Mutual information (MI): MI transferred to the output layer,
Perceived information (PI), Hypothetical Information (HI),
Ranking Loss (RkL), Ensembling Loss (EL), efficient
cross-entropy (ECE) and efficient PI (EPI), latent (LPI).
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Common Approaches

Many Techniques Actually Work

Simple hyperparameter search.

Data Augmentation.

Various types of architectures.

Small architectures.

Custom metrics and neural network elements.

...
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Datasets
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Threat Models

Threat Models

White-box - Scheme-Aware - Black-Box.

Extra Reference Device.

Portability.

Non-Profiled Supervised DLSCA.

Weakly Profiling DLSCA.

Collision-based DLSCA.

Blind DLSCA.

Leakage Assessment Using Deep Learning.
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Common Approaches

Tools

Tools

Python.

scikit-learn.

TensorFlow/PyTorch.

Keras.
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Tools

Tools

Brisfors and Forsmark developed a python-based tool called
DLSCA that allows deep learning-based
SCA https://github.com/brisfors/DLSCA.

The tool allows running multilayer perceptron architecture for
attacks on AES128 and plotting the results (key rank,
guessing entropy).

While the authors mention it is not difficult to add new
functionalities, there has not been any development in the last
few years.
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Common Approaches

Tools

SCARED

The company eShard developed a Python library called scared
that allows various types of
SCA https://github.com/eshard/scared/.

The library receives regular updates and provides various
functionalities, but there are no deep learning-based
functionalities available in the repository (there is TA, which is
a profiling SCA).

Examining recent posts, scared library does offer deep learning
functionalities.
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Tools

SCAAML

Google recently published their python-based deep learning
framework for SCA called
SCAAML https://github.com/google/scaaml.

The framework is actively developed but offers (at the
moment) limited functionality.

The framework provides one CNN architecture designed to
attack TinyAES (the architecture is tuned and the
best-performing one over more than 1 000 tested ones).

To evaluate the attack performance, it is possible to use the
(average) key rank.
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Tools

Inspector

Riscure offers a tool called Inspector that also offers deep
learning capabilities.

Since the Inspector tool is a commercial one, there are no
publicly available versions of it.

What can be deduced based on the available information is
that Inspector offers MLP and CNN architectures,
regularization, data augmentation, and hyperparameter
tuning.
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Tools

AISY

The AISY framework is intended for the deep learning-based
SCA.

Easy to use. AISY framework allows very easy execution of
deep learning in profiling side-channel attacks. The framework
is built on top of Keras library (integrated in TensorFlow
library) and users familiar to basic Keras’s functionalities can
easily extent the framework.

Integrated Database. AISY framework comes with the
option to store all analysis results in an SQLite database.
Standard libraries are implemented in the framework, and
users can easily add custom tables to the framework.
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Tools

AISY

Web application. AISY framework is also integrated with
Flask python-based web framework. A web application is
integrated with a web-based user interface. The web
application provides a user-friendly way to visualize analysis,
plots, results, and tables.

One-click Script Generation. A user can generate the full
script used to produce results stored in the web application
database.

https://github.com/AISyLab/AISY_Framework
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Tools

SCALib

The Side-Channel Analysis Library (SCALib) is a Python
package that contains state-of-the-art tools for side-channel
evaluation.

It focuses on providing efficient implementations of analysis
methods widely used by the side-channel community and
maintaining a flexible and simple interface.

https://scalib.readthedocs.io/en/stable/
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Common Approaches

Ensembles

Generalization of Function Approximation

While we use machine learning metrics to drive the training,
we are interested in results as observed through SCA metrics.

Ideally, we should always train a neural network until it
achieves the maximum quality in generalization to the
validation set.

Underfitting, generalization, and overfitting phases.
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Common Approaches

Ensembles

Generalization of Function Approximation

In SCA, the generalization phase is directly related to the key
recovery, and it may start very soon after the training starts
because a low accuracy can already represent the turning
point from underfitting to generalization.

Can a low accuracy (sometimes close to random guessing) still
be associated with this good enough generalization phase?
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Ensembles

How to Improve Generalization?

There are many ways to improve generalization (more
powerful classification methods, better hyperparameter
tuning, regularization, etc.).

We can also do something simpler!

Commonly, in the experimental phase, one runs a number of
evaluations to find the best hyperparameters.

Can we somehow use multiple results?

It sounds reasonable to take the most out of the
hyperparameter tuning phase and explore whether one can use
more than a single machine learning model obtained during
the tuning phase.
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Ensembles

Bagging

Create many subsamples of the dataset with replacement
(meaning that the two sample values are independent, i.e.,
their covariance equals 0).

Train a classifier for each subsample.

Calculate the average prediction from each classifier.
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Ensembles

Deep Learning Ensembles

(a) MLP results. (b) CNN results.

Figure: Guessing entropy for ASCAD for the Hamming weight leakage model.
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Common Approaches

Ensembles

Deep Learning Ensembles

(a) MLP results. (b) CNN results.

Figure: Guessing entropy for ASCAD for the Identity leakage model.
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Reinforcement Learning

Reinforcement Learning

Reinforcement learning attempts to teach an agent how to
perform a task by letting the agent experiment and experience
the environment, maximizing some reward signal.

https://github.com/AISyLab/

Reinforcement-Learning-for-SCA
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Reinforcement Learning

Environment

Agent

𝐴𝐴𝑡𝑡
𝑅𝑅𝑡𝑡+1

𝑆𝑆𝑡𝑡

𝑆𝑆𝑡𝑡+1

𝑅𝑅𝑡𝑡

Figure: The q-learning concept where an agent chooses an action At , based on the
current state St , which affects the environment. This action is then given a reward
Rt+1 and leads to state St+1.
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Reinforcement Learning
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Reinforcement Learning
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Common Approaches

Feature Selection for Deep Learning SCA

Feature Selection for Deep Learning SCA

Scenario
Knowledge of r
mask share

POI selection and
pre-processing

Noisy/non-leaking
samples

RPOI Yes
Main SNR peaks of r and sr .
No pre-processing required.

No

OPOI Yes
Minimum trace interval

including SNR peaks of r and
sr . No pre-processing required.

Reduced

NOPOI No
No POI selection and

pre-processing is required.
All available

Table: Possible feature selection scenarios for deep learning-based SCA with the
synchronized measurements.
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Feature Selection for Deep Learning SCA

Feature Selection for Deep Learning SCA

Dataset RPOI OPOI NOPOI Total

ASCADf
up to 1 000 SNR

peaks from NOPOI
interval

[45 400, 46 100] [0, 100 000] 100 000

ASCADr
up to 1 000 SNR

peaks from NOPOI
interval

[80 945, 82 345] [0, 250 000] 250 000

DPAv4.2
up to 1 000 SNR

peaks from NOPOI
interval

[170 000, 174 000] +
[206 000, 210 000]

[250 000, 400 000] 1 700 000

CHES CTF -
[0, 10 000] +

[120 000, 150 000]
[0, 150 000] 650 000

Table: Selected intervals for each feature selection scenario. ’-’ denotes that we did
not explore that specific setting.
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Common Approaches

Feature Selection for Deep Learning SCA

Feature Selection for Deep Learning SCA

Table: Points of interest, minimum number of attack traces to get guessing entropy
equal to 1, model search success (when GE=1), and number of trainable parameters
for all datasets and feature selection scenarios.

Neural Feature Amount Attack Search Trainable
Dataset Network Selection of POIs Traces Success (%) Parameters

Model Scenario (HW/ID) (HW/ID) (HW/ID) (HW/ID)
ASCADf MLP RPOI 200/100 5/1 99.22%/96.86% 82 209/429 256
ASCADf CNN RPOI 400/200 5/1 99.23%/99.08% 499 533/158 108
ASCADf MLP OPOI 700/700 480/104 82.80%/68.80% 16 309/10 266
ASCADf CNN OPOI 700/700 744/87 55.53%/35.33% 594 305/62 396
ASCADf MLP NOPOI 2 500/2 500 7/1 74.50%/39.00% 2 203 009/5 379 256
ASCADf CNN NOPOI 10 000/10 000 7/ 1 15.40%/2.45% 545 693/439 348
ASCADf CNN NOPOI desync 10 000/10 000 532/36 2.44%/2.64% 268 433/64 002
ASCADr MLP RPOI 200/20 3/1 99.23%/100% 565 209/639 756
ASCADr CNN RPOI 400/30 5/1 100%/100% 575 369/636 224
ASCADr MLP OPOI 1 400/1 400 328/129 71.40%/37.25% 31 149/34 236
ASCADr CNN OPOI 1 400/1 400 538/78 47.92%/23.95% 270 953/87 632
ASCADr MLP NOPOI 25 000/25 000 6/ 1 44.39%/7.02% 5 243 209/12 628 756
ASCADr CNN NOPOI 25 000/25 000 7/ 1 19.17%/4.35% 369 109/721 012
ASCADr CNN NOPOI desync 25 000/25 000 305/73 0.71%/1.04% 22 889/90 368
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Public-key And Unsupervised/Supervised SCA

Public-key Crypto and SCA

To mitigate side-channel attacks, real-world implementations
of public-key cryptosystems adopt state-of-the-art
countermeasures based on randomizing private or ephemeral
keys.

Usually, for each private key operation, a “scalar blinding” is
performed using 32 or 64 randomly generated bits.

Nevertheless, horizontal attacks based on a single trace still
pose serious threats to protected ECC or RSA
implementations.

If the secrets learned through a single-trace attack contain too
many wrong (or noisy) bits, the cryptanalysis methods for
recovering the remaining bits become impractical due to time
and computational constraints.
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Public-key Crypto and SCA

By attacking several single traces, an attacker may recover
several partially correct random private keys.

This information is then used to label each sub-trace (trace
interval representing the processing of a single private key bit)
and use them as elements in a training set to train a neural
network.

Assuming that each recovered private key contains more than
50% of correct bits (just above a random guess), the trained
neural network can significantly improve the number of
correct bits in a random private key related to a single trace.

The target is protected ECC implementations in software
(protected µNaCl).
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Figure: Proposed iterative framework
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Deep Learning-based Iterative Framework

The procedure continues iteratively until a successful attack is
achieved.

In every step of this iterative process, it is expected that the
amount of noisy labels decreases as a result of deep neural
networks learning side-channel leakages from the limited
correct labels in the training set.

The higher the error bits in the initial training set, the more
iterations we expect to need to reach a successful attack.
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Figure: Minimum, maximum, and average single trace accuracy with iterative
framework on cswap-arith dataset.
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Figure: Minimum, maximum, and average single trace accuracy with iterative
framework on cswap-pointer dataset.
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Side-channel Analysis and Grammatical Evolution

A neuroevolution framework that could replace random search
to efficiently generate SCA models.
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AI Explainability and SCA

Where. Results indicate that compression of X mostly
happens in the first hidden layer in any MLP configuration.
Generalization to Y is stronger in hidden layers closer to the
output layer, and this conclusion comes from higher P̂I (X l

a;Y)
values obtained for the outer layer in comparison to hidden
layers closer to the input layer.

What. Tto generalize to Y, the first hidden layer compresses
noise and irrelevant features and transmits information from
relevant secret shares to the subsequent hidden layers. This
also suggests that hidden layers perform unmasking by
combining the two secret shares.
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Mechanistic Interpretability
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Non-profiled Deep Learning-based SCA

Non-profiling deep learning-based SCA was first proposed by
B. Timon in 2019, with an approach called Differential Deep
Learning Analysis (DDLA).

Although its performance is better than conventional
non-profiling attacks such as CPA, it is mainly criticized for
practical limitations.

To attack one key byte, DDLA needs to train a deep neural
network 256 times (one network for each key hypothesis for
commonly attacked byte-oriented cipher like AES) to brute
force all possible key bytes.

Such an attack may easily become impractical, considering a
dataset with millions of measurements.
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Non-profiled Deep Learning-based SCA

First approaches to improve the performance of unsupervised
DLSCA concentrated on parallel network architectures.

While it decreased time, it increased memory.

More recent approaches consider multi-output learning.

Multi-output classification (MOC) and multi-output regression
(MOR).

MOC is faster but does not work for the ID leakage model.
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Non-profiled Deep Learning-based SCA

Classification problems involve categorizing input data into
discrete classes or categories.

In these problems, the output is a discrete value representing
the class or category that an input data point belongs to.

Various algorithms can be used for classification, such as
logistic regression, decision trees, support vector machines,
and neural networks.

Regression problems involve predicting continuous output
values based on input data.

In these problems, the output is a continuous numeric value,
often representing a measurement or quantity.

Common regression algorithms include linear regression,
polynomial regression, ridge regression, and support vector
regression.
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Multi-output Regression (MOR) for SCA

Rather than training 256 models, where each aims to classify
hypothetical labels with probabilities accurately, MOR utilizes
the concept of multi-output regression, which seeks to regress
the prediction outputs to the actual label values.

A model is trained to map input leakage traces to the actual
values of all possible yi (k), which denotes the key-related
intermediate data (label) given a specific key byte k .

The most likely key k∗ is determined by identifying the
smallest loss measured by MSE.
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MORE

Figure: ASCAD fixed key.
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Plaintext/Ciphertext-based Non-profiling SCA

Supervised deep learning-based SCA learns a mapping based
on known plaintexts and keys.

Then, the adversary estimates the conditional probability
given a leakage trace with the unknown key.

In unsupervised setting, we do not know the key.

But, the key is commonly fixed for all traces.

The label l(k , di ) and di would satisfy:

di 7−→ l(k , di ). (1)

l(k, di ) = mapk(di ), (2)
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Intermediate data-based model

Profiling model f𝜃𝜃

Leakage traces 
𝐓𝐓

Sensitive data 
l(𝑘𝑘∗,𝐝𝐝)

Bijective

Plaintext-based model

Profiling model f𝜃𝜃𝑑𝑑

Plaintext           
𝐝𝐝

Leakage traces 
𝐓𝐓

map𝑘𝑘∗
′

map𝑘𝑘∗
′ −1

Label Label

Figure: The relationship between intermediate data-based model and plaintext-based
model.
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Plaintext/Ciphertext-based Non-profiling SCA

For supervised DLSCA, if a profiling model is generalized well
on the leakage traces, the probability of the incorrect value is
closely correlated with the correct label.
In unsupervised setting, we can still estimate the label
distance, providing us with plaintext/ciphertext distribution.

1. Train with plaintexts

Profiling model f𝜃𝜃𝑑𝑑

Plaintext           
𝐝𝐝

Leakage traces 
𝐓𝐓

Label

Leakage traces 
𝐓𝐓 arg max corr

PD𝑘𝑘=1, … PD𝑘𝑘=256

2. Attack with PD𝑘𝑘

Figure: Attack scheme of the Plaintext Labeling Deep Learning (PLDL).

k∗ = argmax
k

corr(PDM
k (d), fθd

(T)), k ∈ K. (3)
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Plaintext/Ciphertext-based Non-profiling SCA

Attack traces 𝐓𝐓
Plaintext 𝐝𝐝

corr(l(𝑘𝑘𝑖𝑖 ,𝐝𝐝),𝐓𝐓)

Classifier f𝜃𝜃𝑑𝑑

corr(PD𝑘𝑘𝑖𝑖 ,𝐩𝐩(𝑑𝑑0, …𝑑𝑑255|𝐓𝐓)) 𝐩𝐩(l(𝑘𝑘𝑖𝑖 ,𝐝𝐝))|𝐓𝐓)

Classifier f𝜃𝜃

Train

PredictPredict

Train

Profiling traces 𝐓𝐓′

Sensitive data l(𝑘𝑘∗,𝐝𝐝′))

Non-profiling 
SCA

PLDL Profiling SCA

Figure: A demonstration of non-profiling SCA, PLDL, and profiling SCA.

107 / 129



A Deep Dive into Deep Learning-based Side-channel Analysis

Advanced Approaches

Weakly Profiling Deep Learning-based SCA

Plaintext/Ciphertext-based Non-profiling SCA

Table: Performance benchmark with non-profiling attacks.

Dataset CPA MOR DDLA PLDL

ASCAD F KR161/KR47 1 957/638 KR7/309 8/111

ASCAD R KR64/KR8 KR28/KR9 27 266/KR48 20/19

CHES CTF KR139/KR220 KR6/KR31 KR54/KR85 6 121/KR2

AES RD KR2/KR31 KR33/3 112 2 541/KR2 1/57

AES HD KR19/KR145 5 593/KR10 KR26/KR20 60/KR6
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From Black Box to White Box

The adversary possesses a similar implementation that can be
used as a white-box reference design.

We create an adversarial dataset by extracting features or
points of interest from this reference design.

These features are then utilized for training a conditional
generative adversarial network (CGAN) framework, enabling a
generative model to extract features from high-order leakages
in protected implementation without any assumptions about
the masking scheme or secret masks.
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CGAN Framework
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CGAN Profiling and Attack
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Leakage Model-flexible DLSCA

A deep learning approach with a flexible leakage model,
referred to as the multi-bit model.

Instead of trying to learn a pre-determined representation of
the target intermediate data, we utilize the concept of the
stochastic model to decompose the label into bits.

Then, the deep learning model is used to classify each bit
independently.

This versatile multi-bit model can adjust to existing leakage
models like the Hamming weight and Most Significant Bit
while also possessing the flexibility to adapt to complex
leakage scenarios.
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Leakage Model-flexible DLSCA

Stochastic model approximates the linear portion of function
to be learned using base functions but fails to encompass
non-linear parts.

Furthermore, it neglects potential multivariate key-dependent
noise terms.

These two constraints limit the discriminative power when
identifying different leakages, leading to mediocre
performance when, for instance, dealing with low numbers of
side-channel traces
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Figure: Conventional DLSCA models.
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Figure: Multi-bit model.
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Figure: Multi-byte multi-bit DLSCA.
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Leakage Model-flexible DLSCA

Figure: Multi-byte multi-bit DLSCA Results.
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Side-channel collision attack (SCCA) is considered a
non-profiling SCA (as it does not rely on a profiling device)
but follows a different attack principle.

It exploits data inter-dependence leaked during cryptographic
procedures by targeting the collision of an internal state,
which is more likely to coincide between two cryptographic
operations.
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Collision-based DLSCA

Concretely, an adversary monitors the side-channel information
while the system processes different inputs and then searches
for repeated leakage patterns signifying a collision event.

When a collision is detected, the adversary uses this
information to infer insights about the inter-dependencies of
different key sections or the algorithm’s internal state.
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For instance, let us consider the SubBytes operation of the
Advanced Encryption Standard (AES) with the same
substitution box (Sbox).

The same data has been processed if two different Sbox
operations lead to an identical side-channel pattern.
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Collision-based DLSCA

Figure: Plaintext-based correlation.
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Figure: Deep learning architecture of plaintext-based SCCA.
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Figure: Plaintext-based SCCA.
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Figure: Example of results.
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Figure: Performance comparison.

125 / 129



A Deep Dive into Deep Learning-based Side-channel Analysis

Conclusions

Outline

1 Side-channel Analysis

2 Machine Learning-based Side-channel Analysis

3 Common Approaches

4 Advanced Approaches

5 Conclusions

126 / 129



A Deep Dive into Deep Learning-based Side-channel Analysis

Conclusions

Conclusions

Deep learning-based SCA is rather active domain (and does
not show signs of slowing down).

As there are so many works available, it is challenging to
recognize what and when to use.

The results are very good but there are potential issues.

The big challenges are unsupervised deep learning-based SCA
and explainable AI for SCA.
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And More Challenges

Saturation of the domain.

New (ciphers, hardware, better countermeasures) targets.

Lack of good datasets.

Generative AI.

“Just” an application of deep learning.

Real-world applicability.

. . .
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Questions?

Thank you for your attention!

stjepan.picek@ru.nl
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