
A Tutorial on Post-quantum Cryptography

Douglas R. Stinson

David R. Cheriton School of Computer Science
University of Waterloo

August 11, 2025

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 1 / 141

1 Introduction

2 Hash-based signature schemes

3 Code-based cryptography

4 Lattices and lattice-based cryptography

5 Other approaches to post-quantum cryptography

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 2 / 141

Introduction

1 Introduction
Goals and summary
Introduction to quantum computing
Order-finding problem
Period-finding
NIST standardization of post-quantum cryptography

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 3 / 141

Introduction Goals and summary

Goals

We begin with a short introduction to quantum computing and its
potential impact on current cryptographic algorithms.

Then we summarize the ongoing NIST standardization process for
post-quantum cryptography.

The main part of the lectures is a discussion of approaches to
post-quantum cryptography, emphasizing the underlying
mathematical techniques. These include:

▶ hash-based signature schemes (e.g., SPHINCS+)
▶ code-based cryptography (e.g., McEliece, Niederreiter , BIKE ,

HQC)
▶ lattice-based cryptography (e.g., NTRU, Regev , Kyber , Dilithium)
▶ multivariate cryptography (e.g., Oil and Vinegar)

We assume a basic background in cryptography, algebra and number
theory.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 4 / 141

Introduction Introduction to quantum computing

What is Quantum Computing?

From the IBM web page on quantum computing:

While classical computers rely on binary bits (zeros and ones) to
store and process data, quantum computers can encode even more
data at once using quantum bits, or qubits, in superposition.

A qubit can behave like a bit and store either a zero or a one, but
it can also be a weighted combination of zero and one at the same
time. When combined, qubits in superposition can scale exponen-
tially. Two qubits can compute with four pieces of information,
three can compute with eight, and four can compute with sixteen.

However, each qubit can only output a single bit of information at
the end of the computation. Quantum algorithms work by storing
and manipulating information in a way inaccessible to classical
computers, which can provide speedups for certain problems.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 5 / 141

Introduction Introduction to quantum computing

Introduction to Quantum Computing (cont.)
The basic idea of quantum computing dates back to at least 1980.

The relevance of quantum computing to cryptography became
evident with the publication of Shor’s Algorithm in 1994.

However, the development of a practical quantum computer appears
to be some years in the future.

Despite intense research during the last 30+ years, construction of a
scalable, fault-tolerant quantum computer has not been achieved yet.

Experts have expressed various opinions as to how soon a quantum
computer would be able to factor a 2048-bit RSA modulus. In the
“Quantum Threat Timeline Report 2024, Executive Summary,”
various “optimistic” and “pessimistic” estimates are provided.

For example, the estimated probability that a quantum computer will
be built in the next five years that will be able to a 2048-bit RSA
modulus ranges from 5% to 14%. On the other hand, for a
twenty-year window, the estimated probabilities are 60% (pessimistic)
and 82% (optimistic).

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 6 / 141

Introduction Introduction to quantum computing

An IACR eprint

The following paper is an amusing commentary on some exaggerated
claims relating to factorizations by quantum computers.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 7 / 141

Introduction Introduction to quantum computing

Potential Impact of Quantum Computing
A quantum computer could be used to quickly factor large integers,
and also to solve the Discrete Logarithm problem efficiently, so this
would have a drastic impact on public-key cryptography.

The impact on secret-key cryptography would be much less severe.

The main attack method on secret-key cryptography that could be
carried out by a quantum computer is based on Grover’s Algorithm.

Roughly speaking, this permits certain types of exhaustive searches
that would require O(m) time on a “classical” (i.e., nonquantum)
computer to be carried out in O(

√
m) time on a quantum computer.

This means that a secure secret-key cryptosystem having key length ℓ
should be replaced by one having key length 2ℓ in order to remain
secure against a quantum computer.

This is because an exhaustive search of an ℓ-bit key on a classical
computer takes time O(2ℓ), and an exhaustive search of a 2ℓ-bit key
on a quantum computer takes time O(

√
22ℓ), which is the same as

O(2ℓ) because
√
22ℓ = (22ℓ)1/2 = 2ℓ.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 8 / 141

Introduction Introduction to quantum computing

Potential Impact of Quantum Computing (cont.)

Consider a hash function that creates an n-bit output (message
digest), so there are 2n possible message digests.

Classical algorithms for Preimage and Second Preimage have
complexity O(2n).

A classical birthday attack for Collision has complexity O(2n/2).

Quantum algorithms (based on Grover’s algorithm) for Preimage and
Second Preimage have complexity O(2n/2).

The lowest complexity for a quantum algorithm solving Collision is
O(2n/3).

This algorithm, which is due to Brassard, Hoyer and Tapp, is based
on Grover’s algorithm.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 9 / 141

Introduction Introduction to quantum computing

Post-quantum Cryptography

Much current research is being carried out to potential ways of
constructing public-key cryptosystems based on different
computational problems, which hopefully would not be susceptible to
attacks carried out by quantum computers.

The term post-quantum cryptography is used to describe such
cryptographic schemes.

This phrase is mainly used in conjunction with public-key encryption
(especially Key Encapsulation Mechanisms) and signature schemes.

NIST initiated an ongoing standardization process for post-quantum
cryptography in 2016 (more details later).

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 10 / 141

Introduction Introduction to quantum computing

Key Encapsulation Mechanisms

a key encapsulation mechanism (or KEM) generalizes the familiar
ideas of key agreement and hybrid cryptography.

We provide a simple illustration using RSA public-key encryption.

Suppose Alice wants to use RSA to encrypt a (random) 128-bit AES
key, say K, to send to Bob.

In a traditional example of hybrid cryptography, K would be used to
encrypt messages sent between Alice and Bob in a subsequent session.

RSA requires a 2048-bit plaintext, so K would have to be padded to
2048 bits before it is encrypted.

An alternative approach is to generate a random 2048-bit plaintext,
say x and encrypt it using RSA.

Alice and Bob will both use a suitable public key derivation function
(typically based on a hash function) to derive K from x.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 11 / 141

Introduction Introduction to quantum computing

KeyGen

Alice

encapsulation key decapsulation key

Encaps Decapsciphertext

shared secret key shared secret key

AliceBob

Figure: Key encapsulation mechanism

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 12 / 141

Introduction Introduction to quantum computing

Techniques for Post-quantum Cryptography
There have been several interesting approaches to post-quantum
cryptography, including the following:

lattice-based cryptography: NTRU is defined using arithmetic in
certain polynomial rings. Many examples of lattice-based
cryptography are based on the Learning With Errors problem.

code-based cryptography: The McEliece Cryptosystem involves
error-correcting codes (specifically, Goppa codes).

multivariate cryptography: Multivariate cryptography includes
cryptosystems such as Hidden Field Equations, as well as signature
schemes such as Oil and Vinegar .

hash-based cryptography: Hash-based cryptography (e.g,
Lamport One-time Signatures) is used primarily for signature
schemes.

isogeny-based cryptography: Isogeny-based cryptography (e.g.,
SIKE , which has been broken) uses morphisms between different
elliptic curves.
Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 13 / 141

Introduction Introduction to quantum computing

Timeline for Post-quantum Cryptography
The proposed techniques for post-quantum cryptography are not
proven to be immune to attacks by quantum computers.

The current approach is to utilize problems that, at present, are not
susceptible to quantum attacks based on currently known algorithms.

Even 15 years of lead time to develop post-quantum cryptographic
algorithms leaves little margin for delay, since the development,
standardization, and deployment of new cryptographic technologies
takes a considerable amount of time.

Thus, implementation of post-quantum cryptography is viewed by
many as a serious problem of immediate and pressing concern.

In 2015, the NSA announced its intention to transition to
post-quantum cryptography.

The first three NIST standards (one encryption scheme and two
signature schemes) were published in 2024 (more detail about the
NIST standardization process will be given a bit later).

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 14 / 141

Introduction Order-finding problem

Order-finding Problem

Shor’s factoring algorithm can easily be described assuming an oracle for
the order-finding problem. We define this problem now.

Order-finding

Instance: A positive integer n, and an element a ∈ Zn
∗.

Find: The order of a in the multiplicative group (Zn
∗, ·).

The order of a is the smallest positive integer t such that at ≡ 1 mod n.
This integer is denoted by ord(a). It can easily be proven that ord(a) is a
divisor of ϕ(n) = |Zn

∗|.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 15 / 141

Introduction Order-finding problem

Square Roots of 1 modulo n

The following is similar to the analysis of the Rabin Cryptosystem.

Suppose that n = pq, where p and q are distinct odd primes.

Suppose that b2 ≡ 1 (mod n) and b ̸≡ ±1 (mod n).

Note that 1 has four square roots in Zn, so there are two square roots
for which the above conditions hold.

Then gcd(b− 1, n) and gcd(b+ 1, n) yield the factors p and q.

If an element a ∈ Zn
∗ has order r, where r is even, then

b = ar/2 mod n is a square root of 1 modulo n.

If a is chosen randomly, then there is a good probability that ord(a) is
even.

Further, if ord(a) is even, then we might expect that there is good
chance that b ̸≡ ±1 (mod n); in this case, n can be factored by the
gcd computation mentioned above.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 16 / 141

Introduction Order-finding problem

Shor’s Quantum Factoring Algorithm

Shor’s factoring algorithm is a randomized Las Vegas algorithm.

1 Choose a random integer a, where 1 < a < n.

2 If gcd(a, n) > 1, then we can factor n and QUIT (success).

3 Otherwise, use a quantum algorithm to solve the instance of
Order-finding consisting of n and a. The output of this algorithm is
the integer r = ord(a).

4 If r is odd, then QUIT (failure).

5 (Here r is even.) Compute b = ar/2 mod n.

6 If b ≡ −1 (mod n), then QUIT (failure).

7 Compute gcd(b− 1, n) and gcd(b+ 1, n) to factor n.

In the case of failure, we just repeat the algorithm with another random
choice of a.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 17 / 141

Introduction Period-finding

Quantum Discrete Log Algorithm

Shor’s algorithm for the Discrete Log problem can be discussed
assuming an oracle for the period-finding problem.

A function f defined on an additive abelian group G is periodic with
period d if f(x) = f(x+ d) for all x ∈ G.

The value d is required to be a non-zero element of G.

Note that the period of a function f is not defined uniquely.

For example, if d is a period, then d+ d is also a period (provided
that d+ d ̸= 0).

Period-finding

Instance: A periodic function f defined on an additive abelian group
G.
Find: A period d for the function f .

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 18 / 141

Introduction Period-finding

Quantum Discrete Log Algorithm (cont.)
Suppose g, a ∈ Z∗

p are specified and we want to find x such that
gx = a.

Define the function f to be f(α, β) = gαa−β mod p, where
α, β ∈ Zp−1.

A period of f will be an ordered pair (d1, d2) such that
f(α, β) = f(α+ d1, β + d2) for all α, β.

We observe the following:

f(α, β) = f(α+ d1, β + d2) ⇔ gαa−β ≡ gα+d1a−β−d2 (mod p)

⇔ ad2 ≡ gd1 (mod p)

⇔ (gx)d2 ≡ gd1 (mod p)

⇔ xd2 ≡ d1 (mod p− 1)

⇔ x ≡ (d2)
−1d1 (mod p− 1).

Thus, given a period (d1, d2) of f , we can compute x = logg a
whenever d2 is invertible modulo p− 1.
Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 19 / 141

Introduction NIST standardization of post-quantum cryptography

NIST Standardization Process–Round 1

A Request for Nominations for Public-Key Post-Quantum
Cryptographic Algorithms was published on Dec. 20, 2016.

The deadline for submissions was Nov. 30, 2017.

23 signature schemes and 59 encryption/KEM schemes were
submitted.

69 of the 82 submissions were approved by NIST to participate in
Round 1.

These included lattice, code-based, hash-based, multivariate, braid
group, isogeny-based, and “miscellaneous” schemes.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 20 / 141

Introduction NIST standardization of post-quantum cryptography

NIST Standardization Process–Round 1 (cont.)

Three evaluation criteria were specified:

1 Security: General-use encryption schemes were required to be
semantically secure against adaptive chosen-ciphertext attack. For
ephemeral use cases, semantic security against chosen plaintext
attack sufficed. Signature schemes were expected to be existentially
unforgeable against adaptive chosen message attack.

2 Cost and performance: This includes factors such as size of public
keys, ciphertext and signatures; efficiency of key generation, public
and private key operations; and probability of decryption failures.

3 Algorithm and implementation characteristics: This includes
flexibility of algorithms WRT a wide variety of platforms, simplicity of
design, IP issues, etc.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 21 / 141

Introduction NIST standardization of post-quantum cryptography

Security Categories

NIST also defined five security categories: Any attack that breaks the
relevant security definition must require computational resources
comparable to or greater than those required for the following attack
scenarios:

1 key search on a block cipher with a 128-bit key (e.g. AES128)

2 collision search on a 256-bit hash function (e.g. SHA256/ SHA3-256)

3 key search on a block cipher with a 192-bit key (e.g. AES192)

4 collision search on a 384-bit hash function (e.g. SHA384/ SHA3-384)

5 key search on a block cipher with a 256-bit key (e.g. AES 256)

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 22 / 141

Introduction NIST standardization of post-quantum cryptography

NIST Standardization Process–Round 2

It was announced on Jan. 30, 2019, that 26 of the 69 schemes would
advance to Round 2.

There were 17 encryption schemes and 9 signature schemes chosen.

They can be categorized as follows:

1 lattice-based encryption: Crystals-Kyber, FrodoKEM, LAC,
NewHope, NTRU, NTRU Prime, Round5, Saber, Three Bears.

2 code-based encryption: Classic McEliece, NTS-KEM, BIKE, HQC,
LEDAcrypt, Rollo, RQC.

3 isogeny-based encryption: SIKE.
4 lattice-based signature: Crystals-Dilithium, Falcon, qTESLA.
5 multivariate signature: GeMSS, LUOV, MQDSS, Rainbow.
6 hash-based signature: Picnic, SPHINCS+.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 23 / 141

Introduction NIST standardization of post-quantum cryptography

NIST Standardization Process–Round 3

On July 22, 2020, NIST chose 15 candidates to advance to Round 3.

Seven candidates were designated as finalists and the other eight were
alternate algorithms.

The seven finalists were Classic McEliece (code-based encryption);
Crystals-Kyber , NTRU and Saber (lattice-based encryption);
Crystals-Dilithium and Falcon (lattice-based signature); and Rainbow
(multivariate signature).

The eight alternate candidates were BIKE and HQC (code-based
encryption); FrodoKEM and NTRU Prime (lattice-based encryption);
SIKE (isogeny-based encryption); GeMSS (multivariate signature);
Picnic and SPHINCS+ (hash-based signature).

The seven finalists were thought by NIST to be “ready for
standardization soon.”

The eight alternate candidates were regarded as “potential candidates
for future standardization.”

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 24 / 141

Introduction NIST standardization of post-quantum cryptography

Standardization and Round 4

Four “selected algorithms” were announced on July 5, 2022:
▶ CRYSTALS-Kyber (lattice-based PKE/KEM; FIPS 203, 2024)
▶ CRYSTALS-Dilithium (lattice-based signature; FIPS 204, 2024)
▶ FALCON (lattice-based signature)
▶ SPHINCS+ (hash-based signature; FIPS 205, 2024)

Also, four additional candidates (all PKE/KEM) were announced for
Round 4:

▶ BIKE , Classic McEliece, HQC (all code-based)
▶ SIKE (isogeny-based) – however, it was broken in August 2022

HQC was selected for standardization on March 11, 2025.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 25 / 141

Introduction NIST standardization of post-quantum cryptography

Comments
There is a lack of diversity in the chosen candidates: three
lattice-based, one code-based and one hash-based.

No multivariate schemes survived, and the only isogeny-based scheme
suffered a fatal attack.

In September 2022, NIST called for additional digital signature
proposals to be considered in the PQC standardization process.

Submission packages were due by June 1, 2023.

There were 40 submissions that were regarded as complete; they
proceeded to Round 1.

In October 2024, NIST selected 14 candidate algorithms to move
forward to Round 2.

The 14 proposed schemes are based on a variety of mathematical
techniques, including schemes that are code-based, lattice-based,
multivariate schemes, MPC-in-the-head, isogeny-based and symmetric
cryptography-based schemes (more details later).

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 26 / 141

Hash-based signature schemes

2 Hash-based signature schemes
Hash functions
Lamport Signature Scheme
Winternitz Signature Scheme
Merkle trees
Multilevel Merkle trees

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 27 / 141

Hash-based signature schemes Hash functions

Hash Functions

Various signature schemes can be built from cryptographic hash
functions.

We assume that we have a hash function that is preimage resistant,
second preimage resistant and collision resistant.

SHA3-224 might be a reasonable choice.

The first construction we give is a secure one-time signature scheme
built from a from a preimage resistant hash function, AKA a one-way
function.

A signature scheme is a one-time signature scheme if it is secure
when only one message is signed. The signature can be verified an
arbitrary number of times, of course.

We begin with a classic construction called the
Lamport Signature Scheme, which was published in 1979.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 28 / 141

Hash-based signature schemes Lamport Signature Scheme

Lamport Signature Scheme

Let k be a positive integer, let P = {0, 1}k and let A = Y k. (We will
sign one k-bit message.) Suppose f : Y → Z is a one-way function.

Let yi,j ∈ Y be chosen at random (for 1 ≤ i ≤ k, j = 0, 1) and let
zi,j = f(yi,j), for all i, j.

The key K consists of the yi,j ’s (preimages) and the zi,j ’s (images). The
yi,j ’s are the private key while the zi,j ’s are the public key.

For K = (yi,j , zi,j : 1 ≤ i ≤ k, j = 0, 1), define

sigK(x1, . . . , xk) = (y1,x1 , . . . , yk,xk
).

A signature (a1, . . . , ak) on the message (x1, . . . , xk) is verified as follows:

verK((x1, . . . , xk), (a1, . . . , ak)) = true ⇔ f(ai) = zi,xi , 1 ≤ i ≤ k.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 29 / 141

Hash-based signature schemes Lamport Signature Scheme

Discussion
Informally, this is how the Lamport Signature Scheme works.

A message to be signed is a binary k-tuple, where the value of k is
fixed ahead of time.

Each bit of the message is signed individually.

If the ith bit of the message equals j (where j ∈ {0, 1}), then the ith
element of the signature is the value yi,j , which is a preimage of the
public key value zi,j .

The verification consists simply of checking that each element in the
signature is a preimage of the public key element zi,j that corresponds
to the ith bit of the message.

This can be done using the public function f .

To sign a k-bit message, we require a very large public key, consisting
of 2k values zi,j from the set Z. Since these z-values are probably
outputs of a secure hash function, they would each be least 224 bits
in length (for example, if we used the hash function SHA3-224).

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 30 / 141

Hash-based signature schemes Lamport Signature Scheme

Example

We pretend that f(y) = 3y mod 7879 is a one-way function. Suppose
k = 3, and Alice chooses the six (secret) random numbers to be her
private key:

y1,0 = 5831 y2,0 = 803 y3,0 = 4285
y1,1 = 735 y2,1 = 2467 y3,1 = 6449.

Then Alice computes the images of these six y’s under the function f :

z1,0 = 2009 z2,0 = 4672 z3,0 = 268
z1,1 = 3810 z2,1 = 4721 z3,1 = 5731.

These z’s are the public key.
Now, suppose Alice wants to sign the message x = (1, 1, 0). The signature
for x is (y1,1, y2,1, y3,0) = (735, 2467, 4285). To verify this signature, it
suffices to compute the following:

f(735) = 3810, f(2467) = 4721, f(4285) = 268.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 31 / 141

Hash-based signature schemes Lamport Signature Scheme

Few-times Signature Scheme

If an adversary sees one message and its signature, then they will be
unable to forge a signature on a second message.

However, given signatures on two different messages, it is easy for an
adversary to construct signatures for another message different from
the first two (unless the first two messages differ in exactly one bit).

The HORS (hash to obtain random subset) scheme creates a
signature scheme that can be re-used a few times.

This idea is due to Reyzin and Reyzin in 2002.

We use the same framework as the Lamport Scheme.

Assume that f : Y → Z is a one-way function (e.g., a hash function).

Now we have a pool of t public keys, denoted z1, . . . , zt.

We also have t corresponding private keys (preimages), denoted
y1, . . . , yt, where f(yi) = zi for 1 ≤ i ≤ t.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 32 / 141

Hash-based signature schemes Lamport Signature Scheme

Few-times Signature Scheme (cont.)

Suppose we want to sign message m.

We compute h(m) and split the result into a set of κ integers in the
set {1, . . . , t}.
Here h is a hash function that is being used to select a subset of the t
keys.

Specifically, h determines a selection function σ that maps a message
m to a κ-subset of {1, . . . , t}.
The security of HORS depends on the cover-free properties of the
selection function σ.

In order to verify the signature, all κ components of the signature
need to be verified using the corresponding public keys.

This process is illustrated for κ = 4 and t = 32 in the example on the
next slide, which is taken from David Wong’s blog.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 33 / 141

Hash-based signature schemes Lamport Signature Scheme

HORS Few-times Signature Scheme

h

m

σ

0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 0 0 1

0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 0 0 1

13 21 27 25

y0 y1 y2 y31· · · · · ·y13 y21 y25 y27

private keys

y13 y21 y25 y27signature

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 34 / 141

Hash-based signature schemes Lamport Signature Scheme

Attacking HORS

Example

As on the previous slide, suppose that σ(m1) = {13, 21, 25, 27}.
Suppose that some additional messages are signed, where the
selection function yields

σ(m2) = {5, 6, 13, 24}
σ(m3) = {2, 21, 26, 30}
σ(m4) = {5, 8, 18, 27}
σ(m5) = {4, 9, 26, 29}.

Now suppose that
σ(m6) = {2, 13, 18, 29}.

Given signatures for m1, . . . ,m5, the signature for m6 can be forged
because the private keys y2, y13, y18, y29 have already been used.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 35 / 141

Hash-based signature schemes Winternitz Signature Scheme

Hash Chains
The Winternitz Signature Scheme uses hash chains to allow multiple
bits to be signed simultaneously.

A hash chain looks like the following structure:

y0 → y1 → y2 → y3 → y4 → y5 → y6 → y7 → z,

where each arrow represents an application of the one-way function f .

Thus, yj = f j(y0) for 1 ≤ j ≤ 7, and z = f8(y0), where f j denotes j
applications of the function f .

In general, the hash chain would consist of 2w + 1 values, namely,
y0, . . . , y2

w−1 and z, where w is a specified parameter of the scheme.

The example corresponds to w = 3.

For a k-bit message, we would construct ℓ = k/w hash chains (we
assume that k is a multiple of w, for convenience).

Denote the initial values in these hash chains by y01, y
0
2, . . . , y

0
ℓ . These

initial values comprise the private key.

The values z1, , . . . , zℓ comprise the public key.
Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 36 / 141

Hash-based signature schemes Winternitz Signature Scheme

An Insecure Scheme

An ℓw-bit message can be parsed as (x1, . . . , xℓ), where each xi is a
binary w-tuple.

We can view each xi as an integer between 0 and 2w − 1 (inclusive).

Suppose we release the values ai = yxi
i = fxi(yi) for i = 1, . . . , ℓ as a

signature.

The signer does not need to store the entire hash chains; they can
compute the ai’s, as needed, from the initial values that form the
private key.

To verify a given ai, simply check that f2
w−xi(ai) = zi.

As we mentioned on the previous slide, the zi’s are the public key.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 37 / 141

Hash-based signature schemes Winternitz Signature Scheme

Example

Suppose k = 9, ℓ = 3 and w = 3. There are three hash chains:

y01 → y11 → y21 → y31 → y41 → y51 → y61 → y71 → z1

y02 → y12 → y22 → y32 → y42 → y52 → y62 → y72 → z2

y03 → y13 → y23 → y33 → y43 → y53 → y63 → y73 → z3.

Suppose Alice wants to sign the message 011101001. We have
x1 = 011 = 3, x2 = 101 = 5 and x3 = 001 = 1. So the signature consists
of the values a1 = y31, a2 = y52, and a3 = y13.

y01 → y11 → y21 → y31 → y41 → y51 → y61 → y71 → z1

y02 → y12 → y22 → y32 → y42 → y52 → y62 → y72 → z2

y03 → y13 → y23 → y33 → y43 → y53 → y63 → y73 → z3.

Verification of the signature requires checking that

f5(a1) = z1, f3(a2) = z2, and f7(a3) = z3.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 38 / 141

Hash-based signature schemes Winternitz Signature Scheme

Security Issue
Here is the problem: the released values are just elements in the three
hash chains, and once an element in a hash chain is known, anyone
can compute any later values in the hash chains, as desired.

As an example, an adversary could compute

y51 = f2(a1),

y62 = f(a2), and

y43 = f3(a3).

Therefore, the adversary can now create the signature (y51, y
6
2, y

4
3) for

the “new” message 101110100:

y01 → y11 → y21 → y31 → y41 → y51 → y61 → y71 → z1

y02 → y12 → y22 → y32 → y42 → y52 → y62 → y72 → z2

y03 → y13 → y23 → y33 → y43 → y53 → y63 → y73 → z3.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 39 / 141

Hash-based signature schemes Winternitz Signature Scheme

Fixing the Problem

To fix the problem, include a checksum in the message, and sign the
checksum.

The checksum is defined to be

C =

ℓ∑
i=1

(2w − 1− xi).

In the previous example, we would have

C = (7− 3) + (7− 5) + (7− 1) = 4 + 2 + 6 = 12.

In binary, we have C = 1100. We sign three bits at a time, so we pad
C on the left with two zeroes, and then break C into two chunks of
three bits: x4 = 001 = 1 and x5 = 100 = 4.

We need two additional hash chains, having public keys z4 and z5, to
sign x4 and x5.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 40 / 141

Hash-based signature schemes Winternitz Signature Scheme

Fixing the Problem (cont.)

The values a4 = y14 = f(y4) and a5 = y45 = f4(y5) are included as
part of the signature:

y04 → y14 → y24 → y34 → y44 → y54 → y64 → y74 → z4

y05 → y15 → y25 → y35 → y45 → y55 → y65 → y75 → z5.

The entire signature on the message (x1, x2, x3) is (a1, a2, a3, a4, a5).

To verify this signature, the following steps are performed:

1 Verify that (a1, a2, a3) is the correct signature for (x1, x2, x3).
2 Compute the checksum and create (x4, x5).
3 Verify that (a4, a5) is the correct signature for (x4, x5).

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 41 / 141

Hash-based signature schemes Merkle trees

Introduction to Merkle Trees
In 1979, Merkle invented a useful method of extending a one-time
scheme so it could be used for a large (but fixed) number of
signatures, without increasing the size of the public key.

The one-time scheme that is used to sign messages is not important.

The basic idea is to create a binary tree (which is now called a Merkle
tree) by hashing combinations of various public keys (i.e., verification
keys) of one-time signature schemes.

The Merkle tree will be used only to authenticate public keys; it is not
used to create signatures in the component one-time signature
schemes.

Conceptually, a Merkle tree is perhaps similar to a certificate chain.

Let d be a prespecified positive integer, and suppose we have 2d

instances of a one-time signature scheme, with public verification keys
denoted by K1, . . . ,K2d , respectively.

It is then possible to sign a series of 2d messages, where the signature
on the ith message will be verified using Ki, for 1 ≤ i ≤ 2d.
Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 42 / 141

Hash-based signature schemes Merkle trees

A Merkle Tree

The Merkle tree is a complete binary tree, say T , of depth d.

The nodes of T are labelled so they satisfy the following properties:

1 For 0 ≤ ℓ ≤ d, the 2ℓ nodes at depth ℓ are labelled (in order)
2ℓ, 2ℓ + 1, . . . , 2ℓ+1 − 1.

2 For j ̸= 1, the parent of node j is node ⌊ j
2⌋.

3 The left child of node j is node 2j and the right child of node j is node
2j + 1, assuming that one or both of these children exist.

4 For j ̸= 1, the sibling of node j is node j + 1, if j is even; or node
j − 1, if j is odd.

The next slide depicts a Merkle tree of depth d = 4.

The keys K1, . . . ,K16 are associated with the leaf nodes 16, . . . , 31,
respectively.

So key Ki is associated with leaf node i+ 15, for 1 ≤ i ≤ 16.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 43 / 141

Hash-based signature schemes Merkle trees

A Merkle Tree of Depth 4 with 16 Leaf Nodes

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

8 9 10 11 12 13 14 15

4 5 6 7

2 3

1

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 44 / 141

Hash-based signature schemes Merkle trees

Hashing Public Keys

Let h be a secure cryptographic hash function.

Each node j in T is assigned a value V (j), according to the following
rules.

1 For 2d ≤ j ≤ 2d+1 − 1, let V (j) = h(Kj−2d+1).
2 For 1 ≤ j ≤ 2d − 1, let V (j) = h(V (2j) ∥ V (2j + 1)).

All the values V (j) are strings of a fixed length, namely, the length of
a message digest for the hash function h (e.g., 224 bits).

The values stored in the 2d leaf nodes are obtained by hashing the 2d

public keys.

The value stored in a nonleaf node is computed by hashing the
concatenation of the values stored in its two children.

The value stored in the root node, which is V (1), is the public key K
for the scheme.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 45 / 141

Hash-based signature schemes Merkle trees

Signing and Verifying a Message

We now discuss how to create a signature for the ith message, say mi.

First, the ith private (signing) key is used to create a signature si for
the message mi.

This signature can be verified using the public key Ki, which must
also be supplied as part of the signature.

In addition, this public key Ki must be authenticated, which involves
Merkle tree T .

This is done by providing enough information for the verifier to be
able to recompute the value in the root, V (1), and compare it to the
stored value K.

This necessary information consists of V (i+ 2d − 1) = h(Ki), along
with the values of the siblings of all the nodes in the path in T from
node i+ 2d − 1 to the root node (i.e., node 1).

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 46 / 141

Hash-based signature schemes Merkle trees

Example

Suppose d = 4 and suppose we want to sign message m11. The relevant
path contains nodes 26, 13, 6, 3, and 1. The siblings of the nodes on this
path are nodes 27, 12, 7, and 2, so V (27), V (12), V (7), and V (2) are
supplied as part of the signature. The entire signature consists of the list

K11, s11, V (27), V (12), V (7), V (2).

The public key K11 would be authenticated as follows:

1 compute V (26) = h(K11)

2 compute V (13) = h(V (26) ∥ V (27))

3 compute V (6) = h(V (12) ∥ V (13))

4 compute V (3) = h(V (6) ∥ V (7))

5 compute V (1) = h(V (2) ∥ V (3))

6 verify that V (1) = K (K is the root public key).

Finally, the signature s11 on m11 is verified using K11.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 47 / 141

Hash-based signature schemes Merkle trees

Authenticating the key K11

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16

8 9 10 11 12 13 14 15

4 5 6 7

2 3

1

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 48 / 141

Hash-based signature schemes Multilevel Merkle trees

Multilevel Merkle Trees

Instead of using one large Merkle tree, it is more efficient to use
multi-level Merkle trees.

We describe a two-level Merkle tree.

The leaf nodes of the top-level Merkle tree are use to sign the root
nodes of the second-level Merkle trees.

The leaf nodes of the second-level Merkle trees are use to sign
messages.

If the trees are of depth d, we have one top-level tree and 2d

second-level trees.

The total number of leaf nodes is 22d.

The keys in any one of these trees are independent of the keys in any
other tree.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 49 / 141

Hash-based signature schemes Multilevel Merkle trees

A Two-level Merkle Tree

K11 K12 K13 K14 K21 K22 K23 K24 K31 K32 K33 K34 K41 K42 K43 K44

V12 V13 V22 V23 V32 V33 V42 V43

V11 V21 V31 V41

s01,K01 s02,K02 s03,K03 s04,K04

V02 V03

V01

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 50 / 141

Hash-based signature schemes Multilevel Merkle trees

Example

Let s be the signature on a message m that will be verified with key K33.
The entire signature consists of the list

K33, s,K34, V32, s03,K03,K04, V02.

Note that s04 is not part of the signature, since we are not authenticating
V41.

The key K33 would be authenticated as follows:

1 compute V33 = h(K33 ∥ K34)

2 compute V31 = h(V32 ∥ V33)
3 use K03 to verify that s03 is a valid signature on V31
4 compute V03 = h(K03 ∥ K04)

5 compute V01 = h(V02 ∥ V03)
6 verify that V01 = K (K is the root public key).

Finally, the signature s on message m is verified using K33.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 51 / 141

Hash-based signature schemes Multilevel Merkle trees

Verifying a Signature Using a Two-level Merkle Tree

K11 K12 K13 K14 K21 K22 K23 K24 K31 K32 K33 K34 K41 K42 K43 K44

V12 V13 V22 V23 V32 V33 V42 V43

V11 V21 V31 V41

s01,K01 s02,K02 s03,K03 s04,K04

V02 V03

V01

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 52 / 141

Hash-based signature schemes Multilevel Merkle trees

Stateful vs Stateless Signatures

The Merkle tree-based schemes that we have described are stateful.

A sequence of messages, say m1,m2, . . . , is signed, and the keys used
for creating and verifying for the ith signature depends on the index i.

The signer would increment the index i every time a message is
signed, which guarantees that a public-private key pair is not re-used.

NIST approved two standards for stateful hash-based signatures in
2018; see NIST SP 800-208, Recommendation for Stateful
Hash-Based Signature Schemes.

These standards are based on the Leighton-Micali Signature Scheme
and the eXtended Merkle Signature Scheme.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 53 / 141

Hash-based signature schemes Multilevel Merkle trees

Stateful vs Stateless Signatures (cont.)

The current standardization of post-quantum signature schemes is
seeking stateless schemes.

Stateless hash-based signature schemes can be constructed using a
multilevel Merkle tree that supports an enormous number of keys.

A leaf node of a bottom-level tree can be picked randomly every time
a new message is signed and we can be confident that keys are not
re-used.

Furthermore, in order to mitigate the consequences of accidentally
re-using keys, we can replace the one-time signature schemes
employed at the leaf nodes of the bottom level trees—these are the
schemes that actually sign the messages—by few-times signature
schemes.

SPHINCS+ incorporates many of the techniques we have discussed; it
was standardized as FIPS 205.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 54 / 141

Code-based cryptography

3 Code-based cryptography
Linear codes
McEliece cryptosystem
Niederreiter cryptosystem
Information-set decoding
BIKE
Hamming Quasicyclic (HQC)

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 55 / 141

Code-based cryptography Linear codes

Definitions

The purpose of an error-correcting code is to permit the correction of
random errors that occur in the transmission of a message over a
noisy channel.

We study binary linear codes as a solution to this problem.

Let k, n be positive integers, k ≤ n.

A [n, k] code, C, is a k-dimensional subspace of (Z2)
n, the vector

space of all binary n-tuples.

The code is binary because the alphabet is {0, 1}.
The code is linear because it is a subspace of a vector space.

A generator matrix for an [n, k] code, C, is a k × n binary matrix
whose rows form a basis for C.

Suppose x is a binary k-tuple (i.e., a message).

We encode x as the n-tuple y = xG and we transmit the codeword y
through the communication channel to a receiver.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 56 / 141

Code-based cryptography Linear codes

Definitions (cont.)

Some random errors may be introduced while y is being transmitted
through the communication channel.

The vector received by Bob is r = y + e, where e is the error vector.

We refer to r as the received vector.

The code should have sufficient redundancy to allow y to be
reconstructed from r; this is the decoding problem.

Finally, given y, it is straightforward to determine x.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 57 / 141

Code-based cryptography Linear codes

Example

The matrix

G =

 1 0 0 0 1 1
0 1 1 0 1 0
0 0 1 1 0 1


is a generating matrix for a [6, 3] code.

The code C contains eight codewords:

(0, 0, 0, 0, 0, 0) (1, 0, 0, 0, 1, 1)
(0, 1, 1, 0, 1, 0) (0, 0, 1, 1, 0, 1)
(1, 1, 1, 0, 0, 1) (1, 0, 1, 1, 1, 0)
(0, 1, 0, 1, 1, 1) (1, 1, 0, 1, 0, 0)

The message x = (1, 1, 0) is encoded to the codeword
y = (1, 1, 1, 0, 0, 1).

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 58 / 141

Code-based cryptography Linear codes

Distance of a Code

Let x,y ∈ (Z2)
n, where x = (x1, . . . , xn) and y = (y1, . . . , yn).

Define the Hamming distance

dist(x,y) = |{i : 1 ≤ i ≤ n, xi ̸= yi}|,

i.e., the number of co-ordinates in which x and y differ.

Let C be an [n, k] code. Define the distance of C to be the quantity

dist(C) = min{dist(x,y) : x,y ∈ C,x ̸= y}.

An [n, k, d] code is an [n, k] code, say C, in which dist(C) ≥ d.

The weight of a x ∈ (Z2)
n is the number of nonzero co-ordinates in

x, namely |{i : xi ̸= 0}|.
It is easy to prove that dist(C) is equal to the minimum weight of a
nonzero codeword.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 59 / 141

Code-based cryptography Linear codes

We recall the example from slide #58.

Example

The matrix

G =

 1 0 0 0 1 1
0 1 1 0 1 0
0 0 1 1 0 1


is a generating matrix for a [6, 3] code.

The code C contains eight codewords:

(0, 0, 0, 0, 0, 0) (1, 0, 0, 0, 1, 1)
(0, 1, 1, 0, 1, 0) (0, 0, 1, 1, 0, 1)
(1, 1, 1, 0, 0, 1) (1, 0, 1, 1, 1, 0)
(0, 1, 0, 1, 1, 1) (1, 1, 0, 1, 0, 0)

The codewords have weights 0, 3, 3, 3, 4, 4, 4, and 3, so dist(C) = 3.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 60 / 141

Code-based cryptography Linear codes

Parity-check Matrices
Two vectors x,y ∈ (Z2)

n, say x = (x1, . . . , xn) and y = (y1, . . . , yn),
are orthogonal if

n∑
i=1

xiyi ≡ 0 (mod 2).

The orthogonal complement of a linear [n, k, d] code, C, consists of
all the vectors that are orthogonal to all the vectors in C.

This set of vectors is denoted by C⊥; it is the dual code to C.

C⊥ is a linear code having dimension n− k.

A parity-check matrix for a linear [n, k, d] code C having generating
matrix G is a generating matrix H for C⊥.

This matrix H is an (n− k) by n matrix.

The rows of H are linearly independent vectors, and GHT is a k by
n− k matrix of zeroes.

It can be proven that dist(C) is equal to the minimum number of
columns of H that sum to the zero vector.
Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 61 / 141

Code-based cryptography Linear codes

Decoding
Suppose an [n, k, d] code is used to transmit messages from Alice to
Bob.

As we mentioned earlier, Bob receives the n-tuple r, which may not
be the same as the codeword y transmitted by Alice.

He will decode r using the strategy of nearest neighbour decoding.

Bob finds a codeword y′ ̸= r that has minimum distance to r.

Such a codeword y′ will be called a nearest neighbour to r and it will
be denoted as by nn(r) (note that it is possible that there might be
more than one nearest neighbour).

Then Bob decodes r to nn(r).

If at most (d− 1)/2 errors occurred during transmission, then nearest
neighbour decoding corrects all the errors: any received vector r will
have a unique nearest neighbour, and nn(r) = y.

The main problem with nearest neighbour decoding is that it is very
inefficient.
Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 62 / 141

Code-based cryptography Linear codes

Syndrome Decoding

Suppose C is a linear [n, k] code having parity-check matrix H.

Given a vector r ∈ (Z2)
n, we define the syndrome of r to be HrT .

A syndrome is a column vector with n− k components. It can be
shown that r ∈ (Z2)

n is a codeword if and only if

HrT =


0
0
...
0

 .

Further, if y ∈ C, e ∈ (Z2)
n and we define r = y + e, then

HrT = HeT .

Thus, the syndrome is equal to the sum of the columns of H
corresponding to the errors.

This observation is the basis of certain decoding algorithms.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 63 / 141

Code-based cryptography Linear codes

Example

The matrix

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


is a generating matrix for a linear [7, 4, 3] code, known as a Hamming
code. The matrix

H =

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1


is a parity-check matrix.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 64 / 141

Code-based cryptography Linear codes

Syndrome Decoding (cont.)

The Hamming code has distance three, so it will correct one error.

If there are no errors, then the syndrome will be a column vector of
0’s.

If there is one error, then the syndrome will be one of the columns of
H.

If the error occurs in the ith position of y, then the syndrome will be
the ith column of H.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 65 / 141

Code-based cryptography Linear codes

Example

x = (1, 0, 1, 1) will be encoded as y = (1, 0, 1, 1, 0, 1, 0).

Suppose r = (1, 1, 1, 1, 0, 1, 0) is received.

The syndrome is s = HrT = (1, 0, 1)T .

This is the second column of H, so we would decode r to
r+ (0, 1, 0, 0, 0, 0, 0) = y.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 66 / 141

Code-based cryptography McEliece cryptosystem

Goppa Codes and the McEliece Cryptosystem

Goppa codes were invented in 1970.

The Goppa code Γ(L, g) is defined by a degree t polynomial
g(z) ∈ F2m [z] and a set L of n elements of F2m . We list some
properties of the code Γ(L, g).

Γ(L, g) is a binary linear code.

The dimension k of Γ(L, g) satisfies the inequality k ≥ n−mt.

The distance d of Γ(L, g) satisfies the inequality d ≥ 2t+ 1; hence t
or fewer errors can be corrected.

Goppa codes can be efficiently encoded and decoded.

McEliece proposed his public-key cryptosystem in 1978.

The strategy is to start with a Goppa code and then disguise it so the
underlying structure is obscured.

An attacker is faced with the problem of decoding what appears to be
a random linear code, which is an NP-complete problem.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 67 / 141

Code-based cryptography McEliece cryptosystem

McEliece Cryptosystem (Key Generation)

Let G be a generating matrix for a linear [n, k, d] Goppa code C,
where n = 2m, d = 2t+ 1, and k = n−mt.

Let S be a k × k matrix that is invertible over Z2, let P be an
n× n permutation matrix, and let G′ = SGP .

Let P = (Z2)
k, C = (Z2)

n, and let

K = {(G,S, P,G′)},

where G, S, P , and G′ are constructed as described above.

The matrix G′ is the public key and G, S, and P comprise the
private key.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 68 / 141

Code-based cryptography McEliece cryptosystem

The public generating matrix is used to encrypt. The private key is used to
permit decryption (in step 2) using the original Goppa code.

McEliece Cryptosystem (Encryption and Decryption)

For a public key G′, a plaintext x ∈ (Z2)
k is encrypted by computing

y = xG′ + e,

where e ∈ (Z2)
n is a random error vector of weight t.

A ciphertext y ∈ (Z2)
n is decrypted by means of the following operations:

1 Compute y1 = yP−1.

2 Decode y1, obtaining y1 = y0 + e1, where y0 ∈ C.

3 Compute x0 ∈ (Z2)
k such that x0G = y0.

4 Compute x = x0S
−1.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 69 / 141

Code-based cryptography Niederreiter cryptosystem

The Niederreiter Cryptosystem (from 1986) is similar to the
McEliece Cryptosystem, except it uses the parity check matrix for
encryption.

Niederreiter Cryptosystem (Key Generation)

Let H be a parity-check matrix for a linear [n, k, d] Goppa code C,
where n = 2m, d = 2t+ 1, and k = n−mt.

Let S be an (n− k)× (n− k) matrix that is invertible over Z2, let
P be an n× n permutation matrix, and let H ′ = SHP .

Let P consist of all binary n-tuples having weight t, let C consist of
all binary column vectors of length n− k, and let

K = {(H,S, P,H ′)},

where H, S, P , and H ′ are constructed as described above.

The matrix H ′ is the public key and H, S, and P comprise the
private key.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 70 / 141

Code-based cryptography Niederreiter cryptosystem

Niederreiter Cryptosystem (Encryption and Decryption)

For a public key H ′, a plaintext x ∈ P is encrypted by computing

y = H ′xT .

Note that y is a column vector of length n− k.

A ciphertext y is decrypted by means of the following operations:

1 Compute S−1y. Observe that S−1y = HPxT , which is the
syndrome of the vector PxT that has weight t.

2 Decode S−1y, obtaining PxT .

3 Compute xT = P−1(PxT).

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 71 / 141

Code-based cryptography Niederreiter cryptosystem

Discussion
The Niederreiter Cryptosystem has similar security to the
McEliece Cryptosystem, but encryption is more efficient.

Plaintexts are actually correctible error patterns; they are binary
vectors of a specified weight t.

In practice, we would probably want to encrypt an arbitrary binary
vector of a given length.

Let m = ⌊log2
(
n−k
t

)
⌋.

It is relatively straightforward to find an injective mapping f from the
set of all binary vectors of length m to the set of all binary
(n− k)-tuples having weight t.

Then we can start with a “plaintext” z ∈ (Z2)
m and use the

Niederreiter Cryptosystem to encrypt x = f(z).

After we decrypt y, obtaining x, we compute z = f−1(x).

The NIST submission Classic McEliece (a Round 4 finalist) is actually
a Niederreiter Cryptosystem.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 72 / 141

Code-based cryptography Information-set decoding

Generic Attacks

The most effective attacks against the McEliece Cryptosystem and
the Niederreiter Cryptosystem are generic attacks that do not make
use of the fact that the code is a Goppa code.

The general syndrome decoding problem for a linear code can be
rephrased as follows: given a syndrome s, find a subset of at most t
columns of H whose sum is s.

An inefficient brute-force approach would involve computing this sum
for all t-subsets of the n columns of H, of which there are

(
n
t

)
.

Information-set decoding , introduced in 1962 by Prange, is the basis
of several improved algorithms.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 73 / 141

Code-based cryptography Information-set decoding

Prange Information-set Decoding

We describe information-set decoding, assuming that we have a
generator matrix G of a [n, k, d = 2t+ 1]-binary code.

Let J ⊆ {1, . . . , n}, |J | = k.

Let G′ denote the restriction of G to the columns labelled by J . If G′

is invertible, then J is called an information set.

As usual, let r = y + e, where wt(e) ≤ t.

Suppose that no errors occurred in the co-ordinates labelled by J , so
r′ = y′ (again we are restricting to the co-ordinates indexed by J).

Given y′, it is easy to generate the codeword y.

If r′ = y′, then the codeword generated from r′ must be y.

Observe that y′ = xG′, so x = y′(G′)−1.

Then
y = xG = y′(G′)−1G = r′(G′)−1G.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 74 / 141

Code-based cryptography Information-set decoding

Prange Information-set Decoding (cont.)

This suggests the following randomized algorithm.

1 Input: Given generator matrix G for a [n, k, d = 2t+ 1]-binary code
and a received vector r in which at most t errors have occurred.

2 Randomly choose J ⊆ {1, . . . , n}, |J | = k.

3 If J is an information set (i.e., if G′ is invertible), then proceed to
step 4. Otherwise, return to step 2.

4 Compute the codeword y such that y′ = r′:

y = r′(G′)−1G.

5 Check if dist(y, r) ≤ t. If so, decoding has succeeded. Otherwise,
return to step 2.

Ignoring the possibility that J is not an information set, the success
probability of this algorithm is

(
n−t
k

)
/
(
n
k

)
.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 75 / 141

Code-based cryptography Information-set decoding

Example

We use the following generator matrix from slide #58:

G =

 1 0 0 0 1 1
0 1 1 0 1 0
0 0 1 1 0 1

 .

Suppose that r = (1, 1, 0, 1, 0, 1). We randomly choose J = {1, 2, 3}.
Then

G′ =

 1 0 0
0 1 1
0 0 1

 and (G′)−1 =

 1 0 0
0 1 1
0 0 1

 .

Since r′ = (1, 1, 0), we obtain

y = (1, 1, 0)

 1 0 0
0 1 1
0 0 1

G = (1, 1, 1)G = (1, 1, 0, 1, 0, 0).

Since dist(C) = 3 and dist(y, r) = 1, we decode r to y.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 76 / 141

Code-based cryptography BIKE

Block-circulant Matrices and BIKE

BIKE (Bit-flipping key encapsulation) was a Round 4 NIST finalist.
We describe some of its main features now.

A circulant matrix is a square matrix in which row is a cyclic shift of
the previous row by one position to the right.

A circulant r by r binary matrix corresponds to an ideal in the
quotient ring R = Z2[x]/(x

r − 1).

For a polynomial a ∈ R, let wt(a) denote the number of nonzero
coefficients in a.

In BIKE , r is prime and 2 is a primitive element in Zr.

As a consequence of these properties of r, it can be proven that the
irreducible factors of xr − 1 in Z2[x] are x− 1 and xr−1 + · · ·+ 1.

Further, a ∈ R is invertible if and only if wt(a) is odd and wt(a) ̸= r.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 77 / 141

Code-based cryptography BIKE

Block-circulant Matrices and BIKE (cont.)

A block circulant matrix is made up of blocks, each of which is a
circulant (sub)matrix.

BIKE has a secret parity-check matrix which is a block circulant
matrix with two blocks.

The parity-check matrix is an MDPC code (medium-density
parity-check code).

These are extensions of the classic LDPC codes (low-density
parity-check codes).

Roughly speaking, an LDPC code typically has constant row weight,
whereas an MDPC code has a somewhat higher row weight.

Denote n = 2r.

Let w ≈
√
n be chosen such that w/2 is odd (w is the row weight).

Let t ≈
√
n (t is the error weight).

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 78 / 141

Code-based cryptography BIKE

Block-circulant Matrices and BIKE (cont.)

Recall that R = Z2[x]/(x
r − 1).

Let h0, h1 ∈ R be chosen such that wt(h0) = wt(h1) = w/2.

Let h = h1(h0)
−1 (h is part of the public key, to be described a bit

later).

The computation of h is done in R using the
Extended Euclidean algorithm.

The private key is the pair (h0, h1).

Note that this private key generates an r by n block circulant matrix
H consisting of two r by r blocks.

The matrix H is the parity check matrix of a binary linear code.

H is completely determined by its first row due to the block circulant
structure.

Every row of H has weight w.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 79 / 141

Code-based cryptography BIKE

Example

Suppose r = 11, so n = 22, and let w = 6.

Let h0(x) = x9 + x5 + x4 and h1(x) = x10 + x+ 1.

The (private) parity-check matrix H is
0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1


The first circulant block is generated by h0(x) and the second
circulant block is generated by h1(x).

The two polynomials are written as binary vectors, where the degree
of the terms increases from left to right.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 80 / 141

Code-based cryptography BIKE

BIKE

The public key consists of the polynomial h and the error weight t.

A plaintext is a pair (e0, e1) where wt(e0) + wt(e1) = t.

We can view a plaintext as an error vector of length n and weight t.

The encryption of (e0, e1) is s = e0 + e1h.

A ciphertext is basically a syndrome computed using the public
parity-check matrix Hpub generated from (1, h).

Decryption is done as follows:

1 Compute m = sh0. Since hh0 = h1, we have m = e0h0 + e1h1, and
therefore m is the syndrome of (e0, e1) that is computed using the
parity-check matrix H.

2 Decrypt m using a bit-flipping algorithm.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 81 / 141

Code-based cryptography BIKE

Example

Recall that h0(x) = x9 + x5 + x4 and h1(x) = x10 + x+ 1.

We have

h−1
0 (x) = x9 + x8 + x7 + x6 + x5 + x2 + 1

h(x) = x8 + x7 + x6 + x4 + x3 + x2 + 1.

The (public) parity-check matrix Hpub is
1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1
0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 1 1
0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 1
0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0
0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1
0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 1 0 1 1
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1


The first circulant block is generated by 1 and the second circulant
block is generated by h(x).

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 82 / 141

Code-based cryptography BIKE

Example

Suppose we take t = 4 and the plaintext consists of e0(x) = x3 and
e1(x) = x4 + x7 + x10.

The total weight of e0 and e1 is t = 4.

The ciphertext is s(x) = x10 + x9 + x8 + x7 + x5 + x3.

This is equivalent to computing the matrix product Hpube
T , where

e = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0|1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0).

Note that exponents in this coefficient vector are decreasing from left
to right.

The first step of decryption is to compute

m(x) = s(x)h0(x) = x10 + x9 + x6 + x5 + x4 + x3 + x+ 1.

m is the syndrome computed using the parity-check matrix H.

In vector form, this syndrome is (1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1)T .

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 83 / 141

Code-based cryptography BIKE

Example

Suppose we sum the columns of H corresponding to the four nonzero
monomials in e0 and e1:

0 1 0 0 → 1
0 1 0 0 → 1
1 0 1 0 → 0
1 0 1 0 → 0
0 0 1 0 → 1
0 0 0 1 → 1
0 0 0 1 → 1
0 0 0 1 → 1
0 0 0 0 → 0
1 0 0 0 → 1
0 1 0 0 → 1

This yields the syndrome (1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1)T .

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 84 / 141

Code-based cryptography Hamming Quasicyclic (HQC)

Hamming Quasicyclic (HQC)

The other Round 4 finalist is HQC , which is an abbreviation for
Hamming Quasicyclic .

HQC was in fact chosen by NIST in March 2025 to be standardized
(see NIST Internal Report NIST IR 8545).

The HQC cryptosystem incorporates two codes:

1 An [n, k, d]-binary code C that has an efficient decoding algorithm.
This code will have a public k by n generator matrix G.

2 A random [2n, n]-binary quasicyclic code H. This code has a public n
by 2n parity check matrix H. The first n by n block is an n by n
identity matrix and the second n by n block consists of rotations of an
initial row h. Thus

H =
(
In rot(h)

)
.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 85 / 141

Code-based cryptography Hamming Quasicyclic (HQC)

Hamming Quasicyclic (HQC)

The high-level strategy of HQC is to encrypt a plaintext using the
generator matrix G to create a codeword in C and then add an error
to it. The resulting vector v is part of the ciphertext. However, there
are some differences from previous schemes we have discussed:

1 The code C having generator matrix G is easy to decode, but G is not
“disguised” in any way.

2 The error vector added to the codeword in C has a large hamming
weight, the consequence of which is that v cannot be decoded.

3 There is a second component to the ciphertext, namely a vector u,
than enables v to be modified to a different vector that can be
decoded. The way this modification is done is that part of the error
vector is removed using knowledge of the private key together with u.
The vector u is a syndrome in the code H, computed from the
parity-check matrix H.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 86 / 141

Code-based cryptography Hamming Quasicyclic (HQC)

Time for a Coffee Break!

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 87 / 141

Lattices and lattice-based cryptography

4 Lattices and lattice-based cryptography
Introduction to lattices
The LLL algorithm
NTRU
Learning with errors
Regev cryptosystem
Ring learning with errors
Lyubashevsky, Peikert and Regev cryptosystem
Kyber-PKE and Crystals-Dilithium

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 88 / 141

Lattices and lattice-based cryptography Introduction to lattices

Vector Spaces

A lattice is very similar to a vector space.

A real vector space can be defined by starting with a basis, which is a
set B of linearly independent vectors in Rn for some integer n.

Vectors are just n-tuples in which each co-ordinate is an element of R.
The vector space generated or spanned by the given basis consists of
all linear combinations of basis vectors.

If there are r vectors in the basis B, then we have an r-dimensional
vector space.

Restating this using mathematical notation, suppose that the basis is
B = {b1, . . . ,br}. The vector space generated by B consists of all
the vectors of the form

α1b1 + · · ·+ αrbr,

where α1, . . . , αr are arbitrary real numbers.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 89 / 141

Lattices and lattice-based cryptography Introduction to lattices

Lattices
A lattice is very similar, except that the vectors in the lattice are
integer linear combinations of basis vectors.

That is, the lattice L(B) generated by the basis B = {b1, . . . ,br}
consists of all the vectors of the form

α1b1 + · · ·+ αrbr,

where α1, . . . , αr are arbitrary integers.

We are primarily interested in full rank lattices, i.e., those with r = n.

For a vector v = (v1, . . . , vn) ∈ Rn, we define the Euclidean norm of
v to be

∥v∥ =

√√√√ n∑
i=1

vi2.

The infinity norm of v is

∥v∥∞ = max{|vi| : 1 ≤ i ≤ n}.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 90 / 141

Lattices and lattice-based cryptography Introduction to lattices

Example

We show part of the lattice defined by the basis {(0, 5), (1, 3)}. One
fundamental parallelepiped is shaded.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 91 / 141

Lattices and lattice-based cryptography Introduction to lattices

Two Fundamental Problems

Shortest Vector

Instance: A basis for a full rank lattice L in Rn.
Find: A vector v ∈ L, v ̸= (0, . . . , 0), such that ∥v∥ is minimized.
Such a vector v is called a shortest vector in L.

Closest Vector

Instance: A basis for a lattice L in Rn and a vector w ∈ Rn that is
not in L.
Find: A vector v ∈ L such that ∥v −w∥ is minimized. Such a vector
v is called a closest vector to w in L.

There is an efficient Turing reduction from Shortest Vector to
Closest Vector. Therefore Shortest Vector can be solved efficiently,
assuming the existence of an oracle solving Closest Vector.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 92 / 141

Lattices and lattice-based cryptography The LLL algorithm

The LLL Algorithm

Assume we have an n-dimensional lattice L in Rn.

The famous LLL algorithm (discovered in 1982) finds a so-called
reduced basis for L.
Note that “LLL” is an abbreviation for Lenstra-Lenstra-Lovasz .

The first vector in a reduced basis is relatively short, and if we are
lucky, it might in fact be a shortest vector in L.
Various modifications and improvements of the LLL algorithm have
been proposed.

Many computer algebra systems have built-in implementations of
lattice basis reduction algorithms.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 93 / 141

Lattices and lattice-based cryptography The LLL algorithm

Using the LLL Algorithm to Solve CVP
Sometimes it is possible to use the LLL algorithm to solve the
Closest Vector problem.

Suppose we are given a basis S = {v1, . . . ,vn} for a lattice L and a
vector w ̸∈ L.
Let M be a small positive integer.

Consider the (n+ 1)-dimensional lattice L′ having basis

{(v1, 0), . . . , (vn, 0), (w,M)}.

Then run the LLL algorithm on this basis of L′.

We could try various values of M , e.g., M = 1, 2,

It can be proven that, if M is close to the minimum distance of a
vector in L′ to w, then the shortest vector in L′ will yield the closest
vector to w.

Specifically, w − r1 ∈ L is close to w if the first row of the
LLL-reduced matrix is (r1,M).

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 94 / 141

Lattices and lattice-based cryptography The LLL algorithm

Example

Suppose L is the lattice whose basis vectors are the rows of the
following matrix: 

10 7 4 6 8
3 11 13 2 20
5 9 9 3 14
6 8 2 19 11
4 10 9 17 6


and suppose w = (38, 154, 198, 79, 170).

If M = 1, then the basis for L′ consists of the rows of the following
matrix: 

10 7 4 6 8 0
3 11 13 2 20 0
5 9 9 3 14 0
6 8 2 19 11 0
4 10 9 17 6 0
38 154 198 79 170 1

 .

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 95 / 141

Lattices and lattice-based cryptography The LLL algorithm

Example

The LLL-reduced matrix is

0 1 −1 1 1 1
−3 1 0 −1 1 1
−1 4 0 −1 −3 1
−1 1 4 2 1 2
−1 −4 0 3 −1 2
−2 1 −3 5 0 −7

 .

The last entry in the first row is M = 1.

Hence

w − (0, 1,−1, 1, 1) = (38, 153, 199, 78, 169) ∈ L.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 96 / 141

Lattices and lattice-based cryptography NTRU

Introduction to NTRU

NTRU is a public-key cryptosystem, due to Hoffstein, Pipher, and
Silverman, that was introduced at the CRYPTO ’96 rump session.

It is a very fast cryptosystem that is easy to implement.

It is also of interest because its security is related to certain lattice
problems and thus it is considered to be a practical example of
post-quantum cryptography.

NTRU is defined in terms of three parameters, N , p and q, which are
fixed integers.

Computations are performed in the polynomial ring
R = Z[x]/(xN − 1).

Multiplication of two polynomials is easy in R; it suffices to compute
the product of two polynomials in Z[x] and then reduce all exponents
modulo N .

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 97 / 141

Lattices and lattice-based cryptography NTRU

Example

Suppose N = 3 and we want to compute the product

(x2 + 3x+ 1)(2x2 + x− 4)

in R = Z[x]/(x3 − 1).

We compute as follows:

(x2 + 3x+ 1)(2x2 + x− 4) = 2x4 + 7x3 + x2 − 11x− 4

= 2x+ 7 + x2 − 11x− 4

= x2 − 9x+ 3.

We are using the facts that x3 = 1 and x4 = x.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 98 / 141

Lattices and lattice-based cryptography NTRU

NTRU Parameters
At various points in the NTRU encryption and decryption process,
coefficients will be reduced modulo p or modulo q.

These parameters have the following properties: q will be quite a bit
larger than p, and q and p should be relatively prime. Also, p should
be odd.

The values p = 3 and q = 2048 are popular choices.

Finally, N is usually taken to be a prime; N = 401 is a currently
recommended value.

Various operations in NTRU require centred modular reductions,
which we define now.

Definition

For an odd integer n and integers a and b, define

a mods n = b if a ≡ b (mod n) and −n−1
2 ≤ b ≤ n

2 .

For example, a mods 5 ∈ {−2,−1, 0, 1, 2}, whereas
a mod 5 ∈ {0, 1, 2, 3, 4}.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 99 / 141

Lattices and lattice-based cryptography NTRU

NTRU Public and Private Keys
Many versions of NTRU exist. We present a typical example. First, we
describe the public and private keys.

1 F (x) and G(x) are secret polynomials chosen from R. All coefficients
of F (x) and G(x) will be in the set {−1, 0, 1}.

2 Define f(x) = 1 + pF (x) and g(x) = pG(x), and then discard F (x)
and G(x).

3 Compute f−1(x) in the ring R mods q, and then compute
h(x) = f−1(x)g(x) mods q.

The polynomial f−1(x) can be computed using the
Extended Euclidean algorithm for polynomials.

The public key is h(x) and the private key is f(x).

The polynomial g(x) is used in the construction of the public key
h(x); g(x) is not part of the public or private key, but it should be
kept secret and then discarded after h(x) is formed.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 100 / 141

Lattices and lattice-based cryptography NTRU

NTRU Encryption and Decryption

A plaintext is a polynomial m(x) ∈ Rq in which every coefficient is in
the set {−1, 0, 1}. To encrypt m(x), perform the following
operations.

1 First, choose a polynomial r(x) ∈ Rq in which every coefficient is in
the set {−1, 0, 1}. Usually, it is required that there is a certain
distribution of the values −0, 1,−1 among the coefficients of r(x).

2 The ciphertext y(x) is computed as

y(x) = r(x)h(x) +m(x) mods q.

To decrypt a ciphertext y(x), perform the following operations:

1 Compute a(x) = f(x)y(x) mods q.

2 Compute m′(x) = a(x) mods p. Notice that this final computation is
a centred reduction modulo p.

If all goes well, it will be the case that m′(x) = m(x).

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 101 / 141

Lattices and lattice-based cryptography NTRU

NTRU Decryption (cont.)

It is easy to verify that the following equations hold in Rq (i.e., they
are congruences modulo q and modulo xN − 1):

a(x) = f(x)y(x)

= f(x)(r(x)h(x) +m(x))

= f(x)(r(x)f−1(x)g(x) +m(x))

= r(x)g(x) + f(x)m(x). (1)

Suppose that this congruence (1) is actually an equality in R. This
happens if and only if every coefficient of r(x)g(x) + f(x)m(x) lies in
the interval [

−q − 1

2
,
q

2

]
,

which will hold with high probability if the parameters of the system
are chosen in a suitable way.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 102 / 141

Lattices and lattice-based cryptography NTRU

NTRU Decryption

Now, assuming that the equation (1) holds in R and reducing modulo
p, we have

a(x) ≡ r(x)g(x) + f(x)m(x) (mod p)

≡ r(x)pG(x) + (1 + pF (x))m(x) (mod p)

≡ m(x) (mod p).

From this relation, we see that

m(x) = a(x) mods p,

because all of the coefficients of m(x) are in the set {−1, 0, 1}.
Therefore the ciphertext is decrypted correctly.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 103 / 141

Lattices and lattice-based cryptography NTRU

A Lattice-based Attack

One way in which an adversary could break NTRU would be to
compute the polynomials f(x) and g(x) that were used to construct
the public key h(x).

Denote h = (h0, . . . , hN−1) and consider the lattice Lh whose basis
consists of the rows of the following 2N by 2N matrix:

M =



1 0 · · · 0 h0 h1 · · · hN−1

0 1 · · · 0 hN−1 h0 · · · hN−2
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 h1 h2 · · · h0
0 0 · · · 0 q 0 · · · 0
0 0 · · · 0 0 q · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · q


Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 104 / 141

Lattices and lattice-based cryptography NTRU

A Lattice-based Attack (cont.)
Recall that

f(x)h(x) ≡ g(x) (mod q),

so
f(x)h(x)− g(x) = q t(x)

for some polynomial t(x) ∈ Z[x].
Therefore the lattice Lh consists of the following vectors:

Lh = {(a,b) ∈ Z2N : a(x)h(x) ≡ b(x) (mod q)}.

It is then straightforward to compute

(f ,−t)M = (f ,g),

so (f ,g) ∈ Lh.

The vector (f ,g) has a small norm, so it is plausible that (f ,g) (or a
cyclic rotation of this vector) is the shortest vector in the lattice Lh.

If this instance of the Shortest Vector problem can be solved, the
adversary might find the private key f(x).
Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 105 / 141

Lattices and lattice-based cryptography NTRU

Example

Suppose N = 13, q = 257 and p = 3. Here is an NTRU public key:

h(x) =123x12 − 88x11 + 13x10 − 30x9 + 30x8 + 10x7 − 103x6

− 81x5 − 93x4 + 94x3 − 98x2 − 68x− 96.

This key was constructed from the two polynomials

g = 3x11 − 3x10 + 3x9 + 3x3 − 3x

and
f = 3x11 − 3x9 + 3x8 − 3x4 − 3x2 + 1.

The matrix M is a 26 by 26 matrix, given on the next slide.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 106 / 141

Lattices and lattice-based cryptography NTRU

The Matrix M

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 107 / 141

Lattices and lattice-based cryptography NTRU

The LLL-reduced basis

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 108 / 141

Lattices and lattice-based cryptography NTRU

The LLL-reduced basis (cont.)

The first vector in the LLL-reduced basis is

(0, 0, 3,−3, 0, 3, 0, 1, 0,−3, 0,−3, 0, 0, 0, 0, 3,−3, 3, 0, 0,−3, 0, 3, 0, 0).

Split this vector into two halves:

(0, 0, 3,−3, 0, 3, 0, 1, 0,−3, 0,−3, 0), (0, 0, 0, 3,−3, 3, 0, 0,−3, 0, 3, 0, 0).

Rotate these seven positions to the left:

(1, 0,−3, 0,−3, 0, 0, 0, 3,−3, 0, 3, 0), (0,−3, 0, 3, 0, 0, 0, 0, 0, 3,−3, 3, 0).

These correspond to the polynomials

3x11−3x9+3x8−3x4−3x2+1 and 3x11−3x10+3x9+3x3−3x,

which are (respectively) f(x) and g(x).

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 109 / 141

Lattices and lattice-based cryptography NTRU

Another Possible Attack

An adversary could also attempt to decrypt a specific ciphertext, say
y.

It turns out that this can be modelled as an instance of the
Closest Vector problem.

Thus the obvious attacks on NTRU involve natural lattice problems,
but we do not have provable security (i.e., it is not proven that any
successful attack on NTRU breaks a certain lattice problem via a
reduction).

However, there are examples of lattice-based cryptography (both
encryption and signature schemes) that can be proven secure if
certain lattice problems are intractable.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 110 / 141

Lattices and lattice-based cryptography Learning with errors

Learning with Errors
Given a prime q, it is possible to solve systems of linear equations in n
variables over Zq efficiently. If we introduce noise into the system, we
obtain the Learning With Errors (or LWE) problem, which is believed to
be difficult to solve. LWE was introduced by Regev in 2005.

Learning With Errors

Instance:

1 Positive integers m, n, β and a prime q with β ≪ q.

2 An m by n matrix A with entries in Zq.

3 A vector b = (b1, . . . , bm) ∈ (Zq)
m, which is computed as

bT = AsT + eT mod q,

where s ∈ (Zq)
n and e are secret vectors such that ∥e∥∞ ≤ β

when the coordinates of e are reduced mods q.

Find: The secret vector s (given A and b).

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 111 / 141

Lattices and lattice-based cryptography Learning with errors

Learning with Errors (cont.)
LWE can be regarded as the problem of finding a solution modulo q
to an approximate system of linear equations.

It can be viewed as a modified Closest Vector problem.

Also, it closely resembles the problem of decoding a received vector in
a linear code, except we are now in the setting of a lattice.

Constructing an LWE system that is difficult to solve requires a value
of q ≫ n as well as a careful choice of a probability distribution χ
that is used to choose the error vector e.

Various proposals use a Gaussian or a uniform distribution.

The LWE problem is of interest to cryptographers because
1 there is a reduction from the Gap Shortest Vector problem to LWE,
2 LWE is self-reducible (so its average-case and worst-case complexity

are similar).

Gap Shortest Vector is believed to be difficult to solve in the
worst-case, so LWE is (probably) difficult to solve in the average-case.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 112 / 141

Lattices and lattice-based cryptography Regev cryptosystem

Regev Cryptosystem

Construct an appropriate instance of the Learning With Errors problem.
The private key is the vector s ∈ (Zq)

n.
The public key consists of the matrix A and the vector b.

To encrypt a one-bit message x, choose a {0, 1}-vector r of length n.
The ciphertext y = (y1, y2) is given by

y =

{
(rA, rbT) if x = 0,

(rA, rbT +
⌊ q
2

⌋
) if x = 1.

To decrypt a ciphertext (y1, y2), compute the quantity

z = y2 − y1s
T mod q.

The decrypted message is 0 if z closer to 0 than ⌊q/2⌋, and 1 otherwise.
That is, we decrypt y to 0 if z ∈ [0, ⌊q/4⌋) ∪ [⌊3q/4⌋, q − 1] and we
decrypt y to 1 if z ∈ [⌈q/4⌉, ⌊3q/4⌋).

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 113 / 141

Lattices and lattice-based cryptography Regev cryptosystem

Example

Let m = n = 3 and q = 11. Suppose that each coordinate of e takes on
each of the values 0, 1, or −1 with probability 1/3. Thus e = (0, 1,−1) is
a typical choice. Suppose the private key is s = (1, 2, 3) and

A =

 5 8 10
4 9 1
3 6 0

 ,

so

bT = AsT + eT =

 7
4
3

 .

The public key consists of A and b.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 114 / 141

Lattices and lattice-based cryptography Regev cryptosystem

Example

To encrypt the plaintext x = 1, we choose a random {0, 1}-vector, say
r = (1, 0, 1). Then the ciphertext is (y1, y2) where

y1 = (1, 0, 1)

 5 8 10
4 9 1
3 6 0

 mod 11 = (8, 3, 10)

y2 = (1, 0, 1)

 7
4
3

+ ⌊11/2⌋ mod 11 = 10 + 5 mod 11 = 4.

To decrypt the ciphertext ((8, 3, 10), 4), we compute the following in Z11:

4− (8, 3, 10)

 1
2
3

 = 4− (8 + 6 + 30) mod 11 = 4.

Because 4 is closer to ⌊112 ⌋ = 5 than to 0, the decrypted message is 1.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 115 / 141

Lattices and lattice-based cryptography Ring learning with errors

Ring LWE
the Regev Cryptosystem has been proven to be secure against chosen
plaintext attacks (i.e., it is CPA-secure) if LWE is intractable.

The Regev Cryptosystem is not practical due to the large overhead
required to encrypt a single bit, but there are modifications that are
more efficient.
Recall that LWE can be expressed using matrix notation as follows:

1 Let bT = AsT + eT , where A = (ai,j) is an m by n matrix over Zq

and b, s and e are vectors of length n over Zq.
2 Then, given A and b (but not e), the goal is to find s.

In the Ring LWE problem, we work in the ring Zq[x]/(x
n + 1)

instead of (Zq)
n.

In this ring, xn = −1, xn+1 = −x, etc.
Suppose m = n. We can think of A and s (in the associated LWE
problem) as corresponding to polynomials a(x) and s(x).

Computing a(x)s(x) mod (xn + 1) is equivalent to computing a
matrix product AsT where A has a special structure.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 116 / 141

Lattices and lattice-based cryptography Ring learning with errors

Example

Suppose m = n = 3. and q = 11. Let a(x) = 3x2 + 7x+ 5 and
s(x) = 4x2 + 7.

The associated A and s are as follows:

A =

 5 7 3
8 5 7
4 8 5

 and s = (4, 0, 7).

A is a (modified) circulant matrix with the following wrapping rule:
replace any entry ai by −ai when it wraps around.

The first row of A is the polynomial a(x) with low degree terms
preceding high degree terms.

s is written with the high degree terms first.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 117 / 141

Lattices and lattice-based cryptography Ring learning with errors

Example

The matrix computation (in Z11) is

AsT =

 5 7 3
8 5 7
4 8 5

 4
0
7

 =

 8
4
7

 .

The polynomial computation, using the reduction x3 = −1 = 10, is

a(x)s(x) = (3x2 + 7x+ 5)(4x2 + 7)

= 12x4 + 21x2 + 28x3 + 49x+ 20x2 + 35

= x4 + 10x2 + 6x3 + 5x+ 9x2 + 2

= 10x+ 10x2 + 5 + 5x+ 9x2 + 2

= 8x2 + 4x+ 7.

So the same result is obtained by both methods.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 118 / 141

Lattices and lattice-based cryptography Ring learning with errors

Discussion

In the Ring LWE setting, it is only necessary to specify the first row
of A, since all the other rows can be derived from the first row.

Since A is part of the public key, using Ring LWE in place of LWE
reduces the size of the public key very significantly.

There are other possible computational speedups that can be
obtained by using efficient algorithms for polynomial multiplication.

Another advantage of the Ring LWE setting is that it supports
encryption of binary n-tuples.

However, the lattice associated with the matrix A is now more
structured than it was when A was random, which could conceivably
affect security.

We describe the LPR cryptosystem, due to Lyubashevsky, Peikert and
Regev, from EUROCRYPT 2010.

LPR is secure if the associated Ring LWE problem is intractable.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 119 / 141

Lattices and lattice-based cryptography Lyubashevsky, Peikert and Regev cryptosystem

LPR Ring-LWE Cryptosystem (key generation)

Let R = Z[x]/(xn + 1), let q be a large prime, and let Rq = R mod q.
Also let β be a small positive integer and define B = {0, . . . , β − 1}.

The private key is a polynomial s(x) ∈ R having coefficients in B.

The public key consists consists of two polynomials a(x), b(x) ∈ Rq where

a(x) is chosen uniformly at random from Rq,

e(x) is a (secret) polynomial in R having coefficients in B, and

b(x) = a(x)s(x) + e(x) mod q.

A plaintext is a polynomial z(x) ∈ R in which all coefficients are equal
to 0 or 1, so we can think of z as being equivalent to an n-bit plaintext.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 120 / 141

Lattices and lattice-based cryptography Lyubashevsky, Peikert and Regev cryptosystem

LPR Ring-LWE Cryptosystem (encryption and decryption)

To encrypt z(x), choose three polynomials r(x), e1(x), e2(x) ∈ R hav-
ing coefficients in B. The ciphertext y consists of two polynomials
u(x), v(x) ∈ Rq, computed as follows:

u(x) = a(x)r(x) + e1(x) mod q

v(x) = b(x)r(x) + e2(x) +
⌊ q
2

⌋
z(x) mod q.

To decrypt a ciphertext (u(x), v(x)), compute the polynomial

v(x)− u(x)s(x) mods q.

Each coefficient of the plaintext is deemed to be 0 if the absolute value
of the corresponding coefficient of v(x) − u(x)s(x) is ≤ ⌊q/4⌋, and 1
otherwise.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 121 / 141

Lattices and lattice-based cryptography Kyber-PKE and Crystals-Dilithium

Kyber-PKE
Kyber-PKE (which was standardized by NIST in 2024 as FIPS 203)
can be thought of as an extension of the LPR cryptosystem.

One main difference between LPR and Kyber-PKE is that
Kyber-PKE works in the setting of modules rather than rings.

More precisely, we perform computations on tuples of polynomials.

Various optimizations are also incorporated into the Kyber-PKE .

Kyber-PKE is a public-key cryptosystem secure against a
chosen-plaintext attack, but this is not sufficient for its intended use
as a key encapsulation mechanism.

A strengthened version of Kyber-PKE is used to obtain the key
encapsulation mechanism known as ML-KEM (or
Module-Lattice-Based KEM), which is secure against a
chosen-ciphertext attack.

The technique used to construct the KEM is based on the
Fujisaki-Okamoto Transform, which is a standard method of
strengthening a CPA-secure cryptosystem to be CCA-secure.
Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 122 / 141

Lattices and lattice-based cryptography Kyber-PKE and Crystals-Dilithium

Dilithium Signature Scheme
Dilithium is a lattice-based signature scheme.

It has been standardized by NIST as the
Module-Lattice-Based Digital Signature Standard (FIPS 204).

Dilithium has the same general structure as the
Schnorr Signature Scheme.

In particular, signing includes computing a commitment, a challenge
(obtained by hashing the commitment and message) and a response.

However, the module-based setting of Dilithium is similar to that of
Kyber-PKE .

The security of the private key depends on the intractability of a
module-based Decision LWE problem.

It is also infeasible to forge a signature if a module-based
non-homogeneous Short Integer Solutions problem is intractable
(SIS can be viewed intuitively as a modified Shortest Vector
problem).

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 123 / 141

Lattices and lattice-based cryptography Kyber-PKE and Crystals-Dilithium

Coding Theory vs Lattice Theory

There are many “analogous” concepts in coding theory and lattice theory.

coding theory lattice theory

vector space over a finite field Z-module
hamming weight/distance Euclidean or infinity norm
minimum-weight codeword shortest vector (also SIS)
closest codeword (decoding problem) closest vector (also LWE)

Even the design of some public-key cryptosystems is similar in the two
settings:

encryption: encode a vector, add noise

decryption: decode the ciphertext (remove the noise)

perform computations in a polynomial ring

public key is the quotient of two secret polynomials (NTRU, BIKE)

etc.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 124 / 141

Other approaches to post-quantum cryptography

5 Other approaches to post-quantum cryptography
Additional digital signature proposals
Multivariate quadratic equations
Oil-and-Vinegar
Isogeny-based cryptography
Resources

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 125 / 141

Other approaches to post-quantum cryptography Additional digital signature proposals

NIST Standardization
As mentioned in Part 1, NIST selected 14 candidate algorithms in
October 2024 to move forward to the second round of evaluation of
Additional Digital Signature Proposals.

The techniques used in the design of the 14 candidate signature
schemes can be categorized as follows:

1 code-based: CROSS and LESS
2 isogeny-based: SQIsign
3 lattice-based: HAWK
4 MPC-in-the-head: Mirath, MQOM, PERK , RYDE and SDitH
5 multivariate: , MAYO, QR-UOV , SNOVA, and UOV
6 symmetric cryptography-based: FAEST .

Here I will give a very brief introduction to multivariate cryptography
(specifically, the Oil-and-Vinegar signature scheme) and
isogeny-based cryptography (SIDH, which is actually a broken key
agreement scheme).

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 126 / 141

Other approaches to post-quantum cryptography Multivariate quadratic equations

Multivariate Quadratic Equations
Another problem suggested for the design of post-quantum
cryptosystems is that of finding solutions to large systems of
quadratic equations in many variables over a finite field.
This is the Multivariate Quadratic Equations (or MQ) problem.

Multivariate Quadratic Equations

Instance: A system ofm quadratic equations in n variables over a finite
field Fq :

fk(x1, x2, . . . , xn) = dk,

1 ≤ k ≤ m, where each polynomial fk has the form

fk(x1, x2, . . . , xn) =

n∑
i=1

n∑
j=i

aijxixj +

n∑
i=1

bixi + c,

with aij , bi, c ∈ Fq, for all i, j.

Question: Find a vector (s1, s2, . . . , sn) ∈ (Fq)
n that satisfies the

equations fk(s1, s2, . . . , sn) = dk for all k , 1 ≤ k ≤ m.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 127 / 141

Other approaches to post-quantum cryptography Multivariate quadratic equations

Strategy

The MQ problem is NP-hard over any finite field.

The design of cryptosystems based on the MQ problem follows a
similar strategy to that of several other public-key cryptosystems.

Namely, it involves starting with a special case of the problem that is
easy to solve, and then disguising it with the aim of making it appear
like a general instance of the problem.

Hidden Field Equations was a public-key cryptosystem, based on the
MQ problem, that was broken.

Signature schemes based on MQ currently seem to be more
promising.

The original Oil-and-Vinegar signature scheme was proposed by
Patarin in 1997.

An unbalanced version of OV is under consideration in the second
round of the NIST evaluation of additional digital signature proposals.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 128 / 141

Other approaches to post-quantum cryptography Oil-and-Vinegar

Oil-and-Vinegar
The Oil and Vinegar Signature Scheme is a multivariate signature
scheme.

It involves a system of multivariate quadratic equations that is easy to
solve, disguised by the use of an affine transformation.

The initial system consists of n polynomial equations in 2n variables
x1, x2, . . . , x2n over a finite field Fq.

The first n variables x1, x2, . . . , xn are the vinegar variables and the
remaining variables xn+1, xn+2, . . . , x2n are the oil variables.

These names reflect the fact that, when oil and vinegar are combined
to make a salad dressing, they are initially separated into distinct
layers, and then they are shaken up to mix them.

For this scheme, the oil and vinegar variables are “separated” in the
quadratic polynomials used in the signing key, but are “mixed” by the
application of an affine transformation in order to construct the
verification key.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 129 / 141

Other approaches to post-quantum cryptography Oil-and-Vinegar

Oil-and-Vinegar Set-up
The n quadratic polynomials that make up the signing key for the
Oil and Vinegar Signature Scheme have the form

fk(x1, x2, . . . , x2n) =

2n∑
i=1

n∑
j=1

akijxixj +

2n∑
i=1

bki xi + ck,

for 1 ≤ k ≤ n.

No terms in any fk involve the product of two oil variables.

Given (m1,m2, . . . ,mn) ∈ (Fq)
n, we can find a solution to the

following system of multivariate quadratic equations:

f1(x1, x2, . . . , x2n) = m1,
f2(x1, x2, . . . , x2n) = m2,

...
fn(x1, x2, . . . , x2n) = mn.

To do this, we choose random values v1, v2, . . . , vn ∈ Fq for the
vinegar variables.
Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 130 / 141

Other approaches to post-quantum cryptography Oil-and-Vinegar

Oil-and-Vinegar Set-up (cont.)

We thus obtain a system of n linear equations in the n oil variables,
which we can then (hopefully) solve to find a solution

(v1, v2, . . . , vn, o1, o2, . . . , on).

In the case where the system of linear equations has no solutions, we
try new values for the vinegar variables, until we find a system that
does have solutions.

In order to disguise the special nature of the signing polynomials, we
“mix” the oil and vinegar variables with the use of an affine
transformation S : (Fq)

2n → (Fq)
2n defined by

S(x1, x2, . . . , x2n) = (x1, x2, . . . , x2n)M + (r1, r2, . . . , r2n),

where M is a 2n× 2n invertible matrix and (r1, r2, . . . , r2n) ∈ (Fq)
2n

is a random vector.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 131 / 141

Other approaches to post-quantum cryptography Oil-and-Vinegar

Oil-and-Vinegar Set-up (cont.)

Note that the inverse transformation is simply

S−1(y1, y2, . . . , y2n) = ((y1, y2, . . . , y2n)− (r1, r2, . . . , r2n))M
−1.

The affine transformation S allows us to define public verification
polynomials fpubk that appear to be more complicated than the
private signing polynomials that are used to compute the signature.

The private signing key consists of S and the n polynomials fk,
1 ≤ k ≤ n.

The public verification key consists of polynomials defined as follows:

fpubk (x1, x2, . . . , x2n) = fk(S(x1, x2, . . . , x2n)),

k = 1, . . . , n.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 132 / 141

Other approaches to post-quantum cryptography Oil-and-Vinegar

Oil-and-Vinegar: Signing and Verification

A message (or more likely, a message digest) (m1, . . . ,mn) is signed
as follows:

1 First, find a solution (v1, v2, . . . , vn, o1, o2, . . . , on) to the system of
equations fk(x1, x2, . . . , x2n) = mk for all k with 1 ≤ k ≤ n.

2 The inverse transformation S−1 is then applied to obtain the signature

(s1, s2, . . . , s2n) = S−1(v1, v2, . . . , vn, o1, o2, . . . , on).

Verifying a signature is done as follows:

A valid signature on a message (m1,m2, . . . ,mn) ∈ (Fq)
n is a vector

(s1, s2, . . . , s2n) ∈ (Fq)
2n such that

fpubk (s1, s2, . . . , s2n) = mk,

k = 1, . . . , n.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 133 / 141

Other approaches to post-quantum cryptography Oil-and-Vinegar

Example

Let f1 and f2 be polynomials in four variables over F2 given by

f1(x1, x2, x3, x4) = x1x2 + x2x3 + x4,
f2(x1, x2, x3, x4) = x1x3 + x2x4 + x2.

Let S be the affine transformation that maps

(x1, x2, x3, x4) 7→ (x2+x4+1, x1+x4+1, x2+x3+x4, x1+x2+x3+x4).

S−1 is the transformation that maps

(y1, y2, y3, y4) 7→ (y3 + y4, y1 + y2 + y3 + y4, y1 + y3 +1, y2 + y3 + y4 +1).

The polynomials fpub1 and fpub2 are given by

fpub1 (x1, x2, x3, x4) = x1x3 + x3x4 + x2 + 1 and

fpub2 (x1, x2, x3, x4) = x1x2 + x1x3 + x2x3 + x2x4 + x1 + x2 + x4 + 1.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 134 / 141

Other approaches to post-quantum cryptography Oil-and-Vinegar

Example

Suppose we wish to sign the message (0, 1).

This requires solving the system of equations f1(x1, x2, x3, x4) = 0
and f2(x1, x2, x3, x4) = 1.

First, we guess values for the vinegar variables, say x1 = 0 and
x2 = 1.

Then the equations we need to solve are

f1(0, 1, x3, x4) = x3 + x4 = 0,

f2(0, 1, x3, x4) = x4 + 1 = 1.

This system has the unique solution x3 = x4 = 0, and hence
(0, 1, 0, 0) is a solution to our original system of equations.

The signature is S−1(0, 1, 0, 0) = (0, 1, 1, 0).

To verify that (0, 1, 1, 0) is a valid signature for the message (0, 1), we

compute fpub1 (0, 1, 1, 0) = 0 and fpub2 (0, 1, 1, 0) = 1.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 135 / 141

Other approaches to post-quantum cryptography Oil-and-Vinegar

Comments

The original Oil and Vinegar Signature Scheme was broken; the
Kipnis-Shamir attack (using linear algebra) can be used to find the
private key or an “equivalent” key.

Various extensions (e.g., Rainbow) were also broken.

One promising approach to improving the security of this scheme is to
increase the number of vinegar variables, yielding the so-called
Unbalanced Oil and Vinegar Signature Scheme.

This scheme was proposed by Kipnis, Patarin and Goubin in 1999.

One suggested parameter set (under consideration for the second
round of the NIST evaluation of additional digital signature proposals)
is defined over F256 and has 44 oil variables and 68 vinegar variables.

We should mention that Gröbner basis algorithms can be used to
attempt to forge signatures, so any MQ-based scheme must take
these kinds of attacks into account.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 136 / 141

Other approaches to post-quantum cryptography Isogeny-based cryptography

Elliptic Curve Isogenies

A rational map is a function ϕ that maps points of one elliptic curve
E1 to points of another elliptic curve E2.
It is required that ϕ has the form

ϕ(x, y) =

(
p1(x, y)

q1(x, y)
,
p2(x, y)

q2(x, y)

)
where p1, p2, q1, q2 are polynomials in x and y.

An isogeny is a rational map that is a group automorphism (i.e.,
ϕ(P) + ϕ(Q) = ϕ(P +Q), where “+” denotes addition on the
relevant elliptic curve.

One example of an isogeny from an elliptic curve to itself is
multiplication by an integer constant c, i.e., the mapping P 7→ cP .

This mapping is obviously a homomorphism, but it is also a rational
map, which is perhaps less obvious.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 137 / 141

Other approaches to post-quantum cryptography Isogeny-based cryptography

SIDH

Supersingular Isogeny-Based Diffie-Hellman (or SIDH) is a
modification of Diffie-Hellman key agreement that is built from
isogenies.

It uses supersingular elliptic curves.

SIDH was introduced by Jao and De Feo in 2011.

Supersingular Isogeny Key Encapsulation (or SIKE) is a key
encapsulation mechanism based on SIDH.

It was chosen as a round 4 candidate for the NIST standardization of
post-quantum cryptography, but a fatal attack on it was described in
August 2022.

See the paper An efficient key recovery attack on SIDH by Castryck
and Decru (EUROCRYPT 2023).

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 138 / 141

Other approaches to post-quantum cryptography Isogeny-based cryptography

Elliptic Curve Diffie-Hellman and SIDH
Recall how a basic Diffie-Hellman key exchange would be carried out
on an elliptic curve E .

1 P is a fixed point on E .
2 Alice chooses nA and computes nAP , which she sends to Bob.
3 Bob chooses nB and computes nBP , which he sends to Alice.
4 Alice computes nA(nBP) and Bob computes nB(nAP). Thus Alice

and Bob both have the shared secret nAnBP .

Very roughly speaking, SIDH replaces the point multiples nAP and
nBP by appropriate elliptic curve isogenies.

1 E is a fixed supersingular elliptic curve.
2 Alice chooses an isogeny ϕA and computes ϕA(E) = EA, which she

sends to Bob.
3 Bob chooses an isogeny ϕB and computes ϕB(E) = EB , which he

sends to Alice.
4 Alice computes ψA(EB) (where ψA is derived from ϕA) and Bob

computes ψB(EB) (where ψB is derived from ϕB). Alice and Bob both
have computed the same elliptic curve.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 139 / 141

Other approaches to post-quantum cryptography Resources

Some Resources

A very incomplete list of references that discuss the mathematics
underlying post-quantum cryptography:

Shameless self-promotion: my forthcoming book A Primer on
Post-quantum Cryptography should be published in early 2026.

For detailed explanations of the new FIPS standards (especially the
lattice-based schemes), see the Cryptography 101 lectures and lecture
slides by Alfred Menezes on Youtube.

Multivariate Public Key Cryptosystems, Second Edition by J. Ding, A.
Petzoldt and D.S. Schmidt Springer, 2020, is a thorough treatment of
the topic.

Post-Quantum Cryptography, D.J. Bernstein, J. Buchmann and E.
Dahmen (Eds.), is a classic reference published in 2009.

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 140 / 141

Other approaches to post-quantum cryptography Resources

Thank you for your attention!

Douglas R. Stinson A Tutorial on Post-quantum Cryptography August 11, 2025 141 / 141

	Introduction
	Goals and summary
	Introduction to quantum computing
	Order-finding problem
	Period-finding
	NIST standardization of post-quantum cryptography

	Hash-based signature schemes
	Hash functions
	Lamport Signature Scheme
	Winternitz Signature Scheme
	Merkle trees
	Multilevel Merkle trees

	Code-based cryptography
	Linear codes
	McEliece cryptosystem
	Niederreiter cryptosystem
	Information-set decoding
	BIKE
	Hamming Quasicyclic (HQC)

	Lattices and lattice-based cryptography
	Introduction to lattices
	The LLL algorithm
	NTRU
	Learning with errors
	Regev cryptosystem
	Ring learning with errors
	Lyubashevsky, Peikert and Regev cryptosystem
	Kyber-PKE and Crystals-Dilithium

	Other approaches to post-quantum cryptography
	Additional digital signature proposals
	Multivariate quadratic equations
	Oil-and-Vinegar
	Isogeny-based cryptography
	Resources

