PREFACE

SAC 94 is the first of an annual series of workshops on Selected Areas in
Cryptography. The topics chosen for this first SAC Workshop are:

- Design and Analysis of Secure Private-Key Block Ciphers,
- Formal Methods for Cryptographic Protocols, and
- Related Topics.

The intent of the Workshop is to .bring together researchers in cryptography to present
new work on a few areas of current interest. An effort will be made to provide an
opportunity for in-depth discussion in a relaxed atmosphere.

SAC ’94 is being held at Queen’s University in Kingston, with plans to hold SAC *95 at
Carleton University in Ottawa, May 1995. It is expected that the site will alternate
between these two locations. We hope that the SAC Workshops will complement the
other major conferences in cryptography which cover the general field. An extended
abstract of the papers presented at the SAC Workshops will be printed and made
available to attendees as a Workshop Record. A limited number of copies of the
Record will be sold to those who request it.

We wish to thank the Department of Electrical and Computer Engineering at Queen’s
University and the Telecommunication Research Institute of Ontario (TRIO) for their
administrative support. We also wish to thank Tracey Livingstone of the TRIO Office
at Queen’s University for her help with producing the Workshop Record and help with
registration.

On behalf of the Organizing Committee consisting of Carlisle Adams, Henk Meijer,
Paul van Oorschot and myself, I would like to welcome you to SAC ’94 Queen’s
University and ngston _

Stafford Tavares
Queen’s University
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Efficient DES Key Search

Michael J. Wiener

Bell-Northern Research, P.O. Box 3511 Station C, Ottawa, Ontario, K1Y 4H7, Canada

1994 March 31

Abstract. Despite recent improvements in analytic techniques for attacking the
Data Encryption Standard (DES), exhaustive key search remains the most practical
and efficient attack. Key search is becoming alarmingly practical. We show how
to build an exhaustive DES key search machine for $1 million that can perform a
known-plaintext attack in 3.5 hours on average. This machine contains 57600
special-purpose DES key search chips. The chip and the rest of the machine have
been designed in detail for the purpose of assessing the resistance of DES to an
exhaustive attack; we have no plans to build the machine. This design is based on
mature technology to avoid making guesses about future capabilities. With this
approach, DES keys can be found one to two orders of magnitude faster than other
recently proposed designs. '

The basic machine design can be adapted to attack the standard DES modes of
operation for a small penalty in running time. A $1 million machine would take 8
hours on average to find a key used in 1-bit CFB mode and 4 hours on average for
any of ECB, CBC, 64-bit OFB, 64-bit CFB, or 8-bit CFB mode.

In the past, a concern about key search machines was that they would break down
too frequently to produce any useful results. This is not a problem with current
technology. The expected failure rate of the DES key search machine described
here is one failure for every 270 keys found.

If it ever was true that attacking DES was only within the reach of large
governments, it is clearly no longer true. In light of this work, it would be prudent
in many applications to use DES in a triple-encryption mode.



Designing product ciphers using Markov Chains

Luke O’Connor”*
Distributed Systems Technology Centre
and
Information Security Research Center, QUT

Abstract

In this paper we consider the design of product ciphers based on Markov chains.
We examine two particular chains which are related to the differential and linear
cryptanalysis attacks. Both of these chains approach the uniform distribution which
indicates that appropriately designed ciphers are secure against these attacks. The
maximum deviation from the uniform distribution can be used as guide for the
number of rounds the cipher should iterate.

1 Introduction

Consider an R-round product cipher with round function F, such that the cipher operates
by iterating F' R times. A system designer is likely to ask the question‘when are R +1
rounds better than R rounds?’ Let us assume that there is some means of measuring
the ‘goodness’ of ciphertext produced from an R-round block cipher. There are several
established criteria that could be used here. For a given plaintext bit p; we may consider
the number of ciphertext bits that depend on p;, which will be an integer in the range
{0. n] for n-bit ciphers. Also, each ciphertext bit ¢; = fi( P) can be expressed as function
of the plaintext P for a fixed key K, and we may consider the nonlinearity of f; which is
an integer in the range [0,2°"! — 2[71-1], It is then clear that for each measure M with
N possible outcomes qi,¢z,...,¢y, We can associate a distribution Il = (7,72, ..., ")
such that the measure M after round R is equal to ¢; with probability ;. In the cases of
variable dependency and nonlinearity these distributions should be very skewed in that

=The work reported in this paper has been funded in part by the Cooperative Research Centres
program through the Department of the Prime Minister and Cabinet of Australia. Mailing address:
Information Security Research Center, Queensland University of Technology, GPO Box 2434, Brisbane,
Qld. 4001, Australia. Email: oconnor@fitmail.fit.qut.edu.au.



strong ciphers are likely to take on the larger values with high probability. That is, with
high probability strong cipher should depend on most variables, and be a large distance
from the set of linear functions. A guide to determining the value of R would be to iterate
until the probability distribution II has a form which suggests the measure is close to an
optimal value.

In some cases it is better that the measure have a more uniform rather than skewed
distribution, suggesting that it is difficult to distinguish between possible outcomes of
the measure. Consider encrypting two plaintexts P and P’ which only differ in one
bit. If the cipher is acting like a good mixing transformation should, the respective
ciphertexts should appear to be uncorrelated after a (possibly large) number of rounds.
This phenomenon is called the avalenche effect and refers to the propagation of small
changes in the cipher (here 1 bit) leading to large unpredictable changes in the ciphertext.
More formally, consider the set of differences AC, = C;+C? generated when C.{C]) is the
encryption of P(P') after r rounds. If there are N possible differences that AC, could
assume then a good mixing transformation would distribute AC, with approximately
equal probability amongst the N differences. Then for large r we would hope to have
that II is close to the uniform distribution, or I & (1/.V.1/N,... . 1/N).

Note that the entropy of II, denoted H(II), is maximized when II is the uniform
distribution. There is elegant result from information theory which states that if Pis a
doubly stochastic matrix, then H(P - II) > H(II) with equality only when Il and P -II
are rearrangements of each other. This suggests that the designer should attempt to
associate a doubly stochastic matrix P with the round function F. such that after r
rounds II = P7 - [Ig = P(P"! - IIy), where I, is the initial distribution of the measure.
With a few additional constraints on P (discussed later), the measure distribution II will
tend to the uniform distribution as the entropy is increasing after each additional round.
Since I = PT - [ it follows that the round function F must form a Markov chain with
respect to the measure M. Intuitively, this is not wholly unexpected since the operation
of the round function is typically fixed, taking only the current ciphertext and subkey as
paramneters.

While it is a simple matter to state this Markov design method, the reader will remark
that it is much harder to apply. Surprisingly, there are many product ciphers that will
have Markov chains with exactly the properties stated when considering both differential
and linear cryptanalysis [3, 6, 7]. Recall that our original problem was to determine when
it is worthwhile to add one more round in a product cipher. Well, if we know that II is
tending to the uniform distribution then we can fix a deviation € from this distribution
and iterate until

CH/NVIN, L YNY =PI < e (1)

The deviation expressed in (1) is concerned with the convergence of the chain to its



limiting distribution, a problem which has been thoroughly studied (see Bhat [2] for the
classical approach and Vizarani [14] for recent results). In the remainder of the paper we
will discuss particular chains that can be defined for differential and linear cryptanalysis
and consider the class of ciphers for which these chains apply and their convergence
properties. ' :

2 A chain for differential cryptanalysis

We begin with considering a Markov chain for differential cryptanalysis. Much of this
discussion will apply to the chain for linear cryptanalysis. Assuming that there are N
possible states in the chain, the one-step (one round) transition probabilities can be
described in a ¥ x N matrix P =[P}, 1 £4.j < N,

Py, Py - BN
p o | M Peo B 2)
Pyy Pyy -+ Pyy

For differential cryptanalysis, the P matrix is directly obtained from the XOR table for
the round function F. For an n-bit round function F. for each input difference AP =
and output difference AC' = 7,1 <4,j <28 — 1. let B be defined as

P, = 27" Z [F(X)+ F(X") = AC] (3)
XJ("EZ;I .
AP=X+X'
where [] is a boolean predicate evaluating to 0 or 1. Here .V = 2" — 1 since we do
not consider the degenerate cases where i = 0 or j = 0 (that is, the states of the chain
correspond to the 2" — 1 nonzero n-bit vectors). Note that for DES this means that P
has dimensions (26* — 1) x (2% — 1) which is very large indeed. If P;; > 0 we will write
AP — AC, meaning that in one round it is possible for an input difference of AP to lead
to an output difference of AC. Consider the probability of the event where a plaintext
difference of AP leads to a ciphertext difference of AC, after r rounds, described as

Pr(AP — AC,) = Pr(AP — AC; — AC; — -+ — Crog = Cy). (4)

We are unconcerned about the actual values taken on by the intermediate differences
ACy,...,AC,_y, only that they provide a valid state transition path from AP to AC,.
We call the pair (AP,AC,) an r-round differential. It is clear that the RHS of (4) is



stochastic but it is a jump in logic to see that it is in fact Markovian. The Markovian
property states that when AP = A(y

PrAP—AC) = Y ] PHAC: — ACY). (5)

ACY ey ACe_1 k=1

That is, the probability of the chain of differences given in (4) is equal to the product
of probabilities for the single round differences AC;_; — AC;. This would be true if
we could somehow arrange for the rounds to operate ‘independently’, so that the actual
ciphertext does not cause the events Pr(AC;_, — AC;_;) and Pr(AC;_; — AC;) to
be dependent. For ciphers such as DES, FEAL and LOKI, the Markov property is
proven by considering the subkeys XORed to the ciphertext at each round. If these
subkeys K, K,,..., K, are assumed to be independent then the particular input to a
given round becomes random, which means that the ciphertext pair defining the current
state is random across the 2™ pairs that could define the state, and the process then
becomes Markovian. Of course it is possible to construct round functions for which
independent subkeys will not induce the Markovian property but conveniently, all DES-
like ciphers of interest have this property. It then follows from (3) that

Pr(AP — AC,) = P (6)

where P{") = P = [P,(;)} The task of showing that Pr(AP — AC;) is tending to some
small value as a function of r is now simplified to the study of the P matrix. which we
may attack using the full theory of finite Markov chains. The class of ergodic chains
(defined below) is of particular intertest to us since the asymptotic behaviour of P} has
been determined.

Theorem 2.1 If P is ergodic then there exists a unique distribution Il = (7, 7,.... 7N)
such that

7 = lim P, (7)
The distribution II is said to the limiting distribution for P. o

A limiting distribution implies that, regardless of the initial state of the chain. the prob-
ability that the chain ends up in state j at time r is tending towards =; for large n.
Observe that 3~ P;; = 1 by definition, and if in addition }_; P;; = 1. then P is said to be
doubly stochastic.

Lemma 2.1 Let P be an ¥ x .V doubly stochastic matrix modeling an ergodic process.
Then the uniform distribution II = (1/N,1/¥,---,1/.¥} is the stationary distribution
for P. O



Since the round function F is bijective, it is easily shown that P is doubly stochastic.
Then if P were ergodic, it could be shown that all differentials (AP, AC;) are tending
to be equally likely when enough rounds are used. Such ciphers are rendered immune to
differential cryptanalysis since the event AP — AC is indistinguishable from the event
of AP leading to an arbitrary difference after 7 rounds. In the next section we will show
that P is ergodic for almost all round functions F.

2.1 Demonstrating the Ergodic property

Some standard definitions must be recalled at this point. State { communicates with state
J if P} > 0 for some r, denoted by i & j. It can be verified that ‘e’ is an equivalence
relatlon and if P has only one equivalence class (all states communicate), then P is said
to be irreducible. State i has period d; if P} = 0 whenever r is not divisible by d;; also, ¢

is said to aperiodic if d; = 1. The period of P is defined as d = ged(dy, ds,---,dw), and
P is said to be aperiodic if d = 1. Finite, irreducible, aperiodic chains are called ergodic.
Since P is clearly finite, to prove ergodicity, we must demonstrate that the chain is both
aperiodic and irreducible. Conveniently, the aperiodic property is easily verified for all
P from Minc's observation that all doubly stochastic matrices have a nonzero entry on
the diagonal [8].

Trreducibility is a much harder property to demonstrate in general. Since the size of

P is expected to be close to 2'?® = 264 x 2% we must use some probabilistic argument to
show that P is irreducible. Luckily, we may pass to random graph theory to do exactly
that. As has been observed by many authors, P can be considered as the adjacency
matrix for a directed graph G = (V. E), where V = {v1.v2,---,vx} and there is a
directed edge from v; to v; if and only if P;; > 0. We will call G the underlying graph of
P.

Proposition 2.1 The directed graph G is strongly connected if for all v;,v;, there is a
directed path from vertex v; to vertex v;. Then the matrix P is irreducible if and only if
G is strongly connected. a

One way to argue that G is strongly connected would be to show that G has a suffi-
ciently large number of edges so as to ensure that directed paths exist between all vertex
pairs with high probability. More briefly, strong connectivity is almost certain when the
number of edges is large. The following result is due to Paldsti, and is also reported by
Bollobas [4].

Theorem 2.2 (Palésti [12]) Let m = N{log N + ¢+ o(1)} for some real c, and let G
be selected uniformly from all :V-vertex graphs with m edges. Then for large V,

Pr(G is st;ongly connected) — ™2 (8)



where e is the base of the natural logarithm. a

We will assume that that the entries of P are distributed approximately randomly with
respect to being zero or nonzero, as all computational results suggest. We then claim
that if the number of edges in G dominates N log N then G is strongly connected with
high probability.

Theorem 2.3 (Oconnor [10]) Let A" be the largest entry in the XOR table for a bi-
jective F': Z7 — Z3. Then if F is selected uniformly, lim,—.ec %L—l <1. 0O

Corollary 2.1 If F is selected uniformly, then Pr(P is ergodic) — 1.

Proof. Since E[A*] = &;¢-Pr(A* = i), it follows from Theorem 2.3 that Pr(A* £ 2n) — 1

for large n as

E{A"
lim E ]S =,~Z Pr(A"=i)—=0 = > Pr(A"=1)—0.
nTe L i>2n i>2n
Then with probability tending to 1 the XOR table will have at least =0O(N?/log V)

nonzero entries which asy mptotlca,lly dominates the .V log N bound from Theorem 2.2.
: a

Let us review our progress thus far. We initially showed that defining a measure .M
which induced a Markov chain with a doubly stochastic transition matrix P on the round
function F was a good criterion since the distribution II of the measure M is tending
to the uniform distribution. The specific measure we considered in this section was the
distribution of differences defined by the A operator, defined naturally from the XOR
table of the round function. To demonstrate that the chain converges to the uniform
distribution we had to prove that the chain was ergodic. Of the defining properties for
ergodicity, only irreducibility is difficult to verify, and to do this we have used results
from random graph theory to suggest the strong connectivity of P for almost all round
functions F. Most of the analytical work is in the counting argument used to suggest
strong connectivity.

We will now take similar steps to define an ergodic chain with respect to linear
cryptanalysis. Again, most of the work is also in the counting argument used to suggest
strong connectivity, but we will not present those details here. Our main observation
is that the probability ¢* of a successful linear cryptanalysis can be cast in terms of
correlation coeficients ¢(-,-), and there is a Markov chain P which upper bounds the
approximation expressed in these coefficients.
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Figure 1: A general product block cipher.

3 A chain for Linear Cryptanalysis

Linear cryptanalysis was introduced recently by Matsui [6, 7], and is currently the best
known non-exhaustive attack on the DES. The basis of the attack is finding linear rela-
tionships between certain bits of the plaintext P, ciphertext C and key K, expressed as
P+ 5 C =Y K. More formally, the attack derives an approximation of the form

Zahp, + Zaz,c, = Zagg_k; (mod 2) (9)
=1 t=1

where a;; € {0,1} and P = p1,...,Pn, C = c1,...,¢n and K = ky,... kn. Matsui has
shown that 3 K can be determined accurately using the maximum likelihood method if a
sufficient amount Vp, of known ciphertext is available. In particular, if the approximation
in (9) is correct with probability ¢*, the attack is expected to be successful 98% of the
time when Ny = |¢~ — 1/2|7%. The result of the attack is the knowledge of one bit of
information concerning the key, namely the value of 3~ K.

We will now consider how the approximation in {9) is found. Our discussion will be
with respect to the cipher shown in Figure 1, but applies to more practical ciphers such
as DES. A linearization T of a mapping, such as an S-box, is an approximate relation
between a surn of its inputs and a sum of its outputs. An approximation similar to (9) for
an r round cipher is found by determining r linearizations ry, 72, - -, 7> of the F function,
with the property that 3, 7, (mod 2) only involves plaintext, ciphertext and key bits as
unknowns. That is, all terms involving input or output to internal rounds of the cipher
that cannot be represented as plaintext or ciphertext cancel. Our main observation is
that this cancellation property allows the probability of }°; 7; to be upper bounded by
an appropriately defined Markov chain.

Consider the following linearizations as depicted in Fxgure l. Let Y, = ¥i1,¥i2s - s Yim
be a binary n-vector representing a linear function of n binary variables, for 0 S t <.
Also let the intermediate ciphertext at round i be denoted as C; = ¢;1,¢i2,. . ., Cin, With



the subkey denoted as K; = ki1, ki2,...,kin. Let the linearization ; at round ¢, between
Yiiand ¥, 1 <i<r, be

n n

2 Vimni(Gin1g B ki) = D_viscis. | (10)

i=1 Jj=1
which is true with some probability g;. Note that ¥;_, denotes the sum of the input
variables used in the approximation at round ¢, and also the sum of the output variables
used in the approximation at round ¢ — 1, for ¢ > 1. When these r approximations
are added modulo 2 the two terms involving ¥;1 < ¢ < r — 1, will cancel, leaving an
approximation in terms of a sum of plaintext bits Y5 = >~ P, a sum of the ciphertext
bits ¥, = 3. C, and a sum of key bits 3~ K, which is the same form as in (9). Let this
approximation be correct with probability ¢=.

When the keys bits are assumed to be independent, the approximations in (10) for

different i are independent, due to the way the subkey and the current ciphertext are
combined at each round. In this case, Gallager [5] has shown that

USRI CR TS § O
¢ - b i)
referred to as the Piling-Up lemma by Matsui. Note that both differential and linear
cryptanalysis derive r-round approximations by combining r 1-round approximations.
And in both attacks, the probability of the r-round approximation is derived from a
product of the 1-round approximations, made possible by the independent subkeys which
give the approximations a Markovian character.
It is more convenient to reformulate the probability ¢= in terms of correlation coef-
ficients. If f and g are two n-bit boolean functions then the correlation coefficient, or
simply, the correlation of f and g, denoted by ¢(f, g), is defined as

cfig) = 273 (1)1 = Pr(f =g) - Pr(f # g)-
X
But if for each ¢ we view ¥, and Y] as boolean functions 2 i Yim1,jCim1j and 37 ¥i;€i 5
respectively, then ¢; — 1 = ¢(Yi_1,Y;)/2 and ¢~ can then be written as
| 1 1 g
=5+ 5-1’[ (Yo, Y5). (12)

i=1

Recall that the complexity of linear cryptanalysis is Ny = |¢"—1/2|72, and hence a bound

on the deviation of ¢* from one half would be important in determining the complexity

of the attack. From (12) we see that this deviation from one half depends on the product
-y c(Yi_1,Y:). Our main result is to show that there is a Markov chain P such that
i V) £ P,-(jr) for some states ¢, j, such that the limiting distribution of P is the

uniform distribution.
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3.1 The correlation matrix

The round function F : ZP — Z} is bijective, and let f; : Z7 — Z; be the boolean
function that describes the ith bit of F, 1 € i < n. Let X = zyz- - - T, denote the vector
- of input variables. For N = 2" — 1, define an N x N matrix P = [P;],1 €4,j €N,
where ¢ = (4123 in)2,J = (j1J2"""Jn)2 and

P;'j = VCZ (Z ikxkaz.fkfk) . (13)
k k '

That is, P;; is the square of the correlation between a particular linear combination of the
z; and a linear combination of the f;. Note that the chain excludes the trivial values of
i = j = 0. We will call P the correlation matrix. The sum of a given column corresponds
to the total correlation between f = ¥ ji fx and the set of all nontrivial linear functions.
Since f is balanced this is also the total correlation to all the linear functions which is
known to be one for any boolean function [13]. On the other hand, since F' is bijective,
input variables can be expressed as a bijective function, F -1 of the output variables. By
the same argument one then obtains that each row of P also sums to one. Hence we have

Lemma 3.1 For a bijective function F, the correlation matrix P is doubly stochastic.
' O

Let Y = (Y3, Y;,+,Y;) denote an r-round approximation of a block cipher. Let P =
[P,—ﬁ-”] be the rth power of P. By definition of the chain we have that

PV = ¥ I &YYo (14)
Z'kmﬁyo t=1

) Echk=Y"

Now, since the square of the overall correlation is upper bounded by Pl-(;), then our
previous remarks on ergodic chains result in

Theorem 3.1 For a bijective round function F : Z; — Z7 with an ergodic correlation
matrix P, the correlation between any linear function of the plaintext Y5 and any linear
function of the ciphertext Y; for a large number of rounds r, asymptotically satisfies

T c(¥ier, V)

i=1

< (13)

S
<-

2¢" ~ 1] =

0
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As before we pass to random graph theory to prove the irreducibility of P, and hence its
ergodicity. Because of the combinatorial structure in the correlation matrix it is possible
to prove that almost all entries in P are nonzero, and that the underlying graph G is
tending to the complete graph.

Theorem 3.2 (O’Connor and Golié [11]) For uniformly distributed bijective func-
tion F the probability that the correlation matrix is irreducible is 1 — o(N~!) when
N=2"-1. ' a

4 Conclusion

The Markov approach to product cipher design has been discussed with respect to two
cryptographic attacks. The convergence of these chains to the uniform distribution sug-
gests that the iterative structure of product ciphers is a good design principle for gen-
erating mappings for which certain measures of strength should tend to be distributed
uniformly. There are several difficulties with the Markov approach, one of which the
reader should perceive is related to the ergodicity of the chains defined. To demonstrate
that P is ergodic we must show that it is finite, aperiodic and irreducible, and of these
conditions only the last is nontrivial to demonstrate. Generally speaking. the process
will be irreducible if it can be shown that P has a ‘large’ number of nonzero entries. In
particular, if P is N x .V then having slightly more than Nlog.V edges will suffice with
high probability. This bound is taken from random graph theory, and is the threshold
function for a directed graph to be strongly connected.

However, in most cases the dimensions of P will make a direct inspection of its entries
infeasible. For DES the P matrix has about 2%¢ x 254 entries. This then suggests that
some probabilistic approach must be taken to proving the irreducibility of P. We can
prove results for a random round function F' or even ‘almost all’ round functions but
it appears difficult to say something meaningful about a given round function, say that
of DES. A new design principle for round functions is to guarantee the irreducibility
property in the P matrix. If this criterion was to be adopted, it would be useful to
determine the consequences for other statistical tests of security in a product cipher if
the differential and linear cryptanalysis chains tend to be uniform. For example, the
~distribution of differences effects the strict avalanche criterion, which refers to changes
in the ciphertext in response to small changes in the plaintext. It may be the case that
guaranteeing a close to uniform spread in the differences causes most other statistical
tests to be close to optimal as well.

Probably the main limitation to the Markov approach is the difficulty in readily deter-
mining the convergence of the chain to its stationary distribution. Standard arguments
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(see [2] for example) state that if R(;) = m; + ef;] then

€] < e (16)

which states that the convergence is geometric. This bound on the error terms is con-
servative and is derived from the size of the smallest element in P, which for the chains

" discussed here, does not yield a useful bound. More advanced techniques, possibly based
on eigenvalues, are required to determine the convergence more accurately. A lower
bound on the rate of convergence has been determined by O’Connor {9] for differentially
2-uniform mappings.
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Abstract

An important question in designing cryptographic functions including substitution
boxes (S-boxes) is the relationships among the various nonlinearity criteria each of which
indicates the strength or weakness of a cryptographic function against a particular
type of cryptanalytic attacks. In this paper we reveal, for the first time, interesting
connections among the strict avalanche characteristics, differential characteristics, linear
structures and nonlinearity of quadratic S-boxes. In addition, we show that our proof
techniques allow us to treat in a unified fashion all quadratic permutations, regardless
of the underlying construction methods. This greatly simplifies the proofs for a number
of known results on nonlinearity characteristics of quadratic permutations. As a by-
product, we obtain a negative answer to an open problem regarding the existence of
differentially 2-uniform quadratic permutations on an even dimensional vector space.

1 Nounlinearity Criteria

We first introduce basic notions and definitions of several nonlinearity criteria for crypto-
graphic functions.

Denote by V, the vector space of n tuples of elements from GF(2). Let a = (a1,...,ay,)
and 8 = (b1,...,b,) be two vectors in V,,. The scalar product of & and 8, denoted by {o, 8},
is defined by {a,8) = a1by @ - - - @ anb,, where multiplication and addition are over GF(2).
In this paper we consider functions from V, to GF(2) (or simply functions on V). We
are particularly interested in functions whose algebraic degrees are 2, also called quadratic
functions. These functions take the form of agy & Z aijz;z;, where a;; is an element

léi,jgn
from GF(2), while z; is a variable in GF(2).

Let f be a function on V,. The (1,—1)-sequence defined by ((—1)/{), (~1)F(e) ),
(—I)f("’?“-l)) is called the sequence of f, and the (0,1)-sequence defined by (f(eo), fa1),

*The first author was supported in part by the Australian Research Council under the reference numbers
A49130102, A9030136, A49131885 and A49232172, the second author by A49130102, and the third anthor
by A49232172.
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«vy f(agn_1)) is called the truth table of f, where ap = (0,...,0,0), &y = (0,...,0,1), ..
agn_y = (1,...,1,1). fis said to be balanced if its truth table has 2"~ zeros (ones).

An affine function f on V,, is a function that takes the form of f = 12, @+ B anz. D,
where a;,¢ € GF(2),j =1,2,...,n. Furthermore f is called a linear function if ¢ = 0. The
sequence of an affine (or linear) function is called an affine (or linear)} sequence.

The Hamming weight of a vector @ € V;,, denoted by W(a), is the number of ones in
the vector.

Now we introduce bent functions, an 1mportant combinatorial concept introduced by
Rothaus in the mid 1960’s (although his pioneering work was not published until some ten
years later {17].)

=1

Definition 1 A functioﬁ f on V, is said to be bent if

-3 Z (-1)y/@ebe) = 41
€V,

for every 8 € V,. Here = {(24,...,2,) and f(z) & (B,z) is considered as a real valued
function.

jFrom the definition, it can be seen that bent functions on V, exist only when = is
even. Another fact is that bent functions are not balanced, hence not directly applicable in
most computer and communications security practices. Dillon presented a nice exposition
of bent functions in [7]. In particular, he showed that bent functions can be characterized
in various ways:

Lemma 1 The following statements are equivalent:
(i) f is bent.
(ii) (€,€) = +23m for any affine sequence £ of length 2™, where £ is the sequence of f.

(i1i) f(z)® f(z ® a) is balanced for any non-zero vector a € V,,, where z = (z4,...,2,)..

The strict avalanche criterion (SAC) was first introduced by Webster and Tavares [23, 24]
when studying the design of cryptographically strong substitution boxes (S-boxes).

Definition 2 A function f on V, is said to satisfy the strict avalanche criterion (SAC) if
f(z) @ f(z ® a) is balanced for all o € V,, with W{a) = 1, where z = (21,...,2,).

It is widely accepted that the component functions of an S-box employed by a modern
block cipher should all satisfy the SAC. A general technique for constructing SAC-fulfilling
cryptographic functions can be found in [21].

While the SAC measures the avalanche characteristics of a function, the linear structure
is a concept that in a sense complements the former, namely, it mdlca,tes the stra,lghtness
of a function.

Definition 3 Let f be a function on V. A vector o € V, is called a linear structure of f
if f(z)D f(z @ ) is a constant.
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Evertse apparently was the first person who studied implications of linear structures
(in a sense broader than ours) on the security of encryption algorithms [8]. By definition,
the zero vector in V,, is a linear structure of all functions on V. It is not hard to see that
the linear structures of a function f form a linear subspace of V,,. The dimension of the
subspace is called the linearity dimension of f. Clearly, the linearity dimension of a function
on V, is bounded from the above by n, with the affine functions achieving the maximum
‘dimension n. It is bounded from the below by 0 when = is even and by 1 when = is odd.
The lower bound 0 is achieved only by bent functions that have the zero vector as their only
linear structure, while 1 can be achieved by functions that have only two linear structures
(one is the zero vector and the other is a nonzero vector). Examples of the latter are those
obtained by concatenating two bent functions (see [18, 22}).

In mathematical terms, an n X s S-box (i.e., with n input bits and s output bits), can
be described as a mapping from V,, to V, (n 2 s). To avoid trivial statistical attacks, an
S-box F should be regular, namely, F(z) should run through all vectors in V, each 2"~*
times while £ runs through V,, once. Note that an n X n S-box is a permutation on V, and
always regular.

Regularity of an n X s S-box F can be characterized by the balance of nonzero linear
combinations of its component functions. It has been known that when n = s, F is regular
if and only if all nonzero linear combinations of the component functions are balanced. A
proof can be found in Remark 5.8 of {7]. The characterization can be extended to the case
when n > 3.

Theorem 1 Let F = (fi,...,f,), where f; is a function on V,, n 2 s. Then F is a
reqular mapping from V,, to V, if and only if all nonzero linear combinations of f1,..., fu
are balanced.

A proof for the theorem is given in Appendix A. It seems to the authors that the proof
for the case of » = s as described in [7] can not be directly adapted to the general case of
n > s, and hence the extension presented here is not trivial.

The next criterion is the nonlinearity that indicates the Hamming distance between a
function and all the affine functions.

Definition 4 Given two functions f and g on V,, the Hamming distance befween them,
denoted by d(f,g), is defined as the Hamming weight of the truth table of the function f(x)®
g(z), where z = (z1,...,%5). The nonlinearity of f, denoted by Ny, is the minimal Ham-
ming distance between f and all affine functions on Vg, i.e., Ny = min;_y g _ gn+1 d(f, ;)
where @1, 2, ..., Pan+1 denote the affine funciions on Vi,

The above definition can be extended to the case of mappings, by defining the nonlin-
earity of a mapping from V, to V, as the minimum among the nonlinearities of nonzero
linear combinations of the component functions.

The nonlinearity of a function f on V, has been known to be bounded from the above by
gn-1 —23""1, When n is even, the upper bound is achieved by bent functions. Constructions
for highly nonlinear balanced functions can be found in [18, 22}.

Nonlinearity has been considered to be an important criterion. Recent advances in Lin-
ear cryptanalysis put forward by Matsui [10] have made it explicit that nonlinearity is not
just important, but essential to DES-like block encryption algorithms. Linear cryptanalysis
exploits the low nonlinearity of S-boxes employed by a block cipher, and it has been suc-
cessfully applied in attacking FEAL and DES. In [20], it has been shown that to immunize



17

an S-box against linear cryptanalysis, it suffices for the Hamming distance between each
nonzero linear combination of the component functions and each affine function not to devi-
ate too far from 2", namely, an S-boz is immune to linear cryptanalysis if the nonlinearity
of each nonzero linear combination of its component functions is high.

Finally we consider a nonlinearity criterion that measures the strength of an | S-box
against differential cryptanalysis [3, 4). The essence of a differential attack is that it exploits
particular entries in the difference distribution tables of S-boxes employed by a block cipher.
The difference distribution table of an # X s S-box is a 2" x 2° matrix. The rows of the
matrix, indexed by the vectors in V;, represent the change in the input, while the columns,
indexed by the vectors in V,, represent the change in the output of the S-box. An entry in
the table indexed by (a, ) indicates the number of input vectors which, when changed by
« (in the sense of bit-wise XOR), result in a change in the output by 8 (also in the sense
of bit-wise XOR).

Note that an entry in a difference distribution table can only take an even value, the sum
of the values in a row is always 2", and the first row is always (2%,0,...,0). As entries with
higher values in the table are particularly useful to differential cryptanalysis, a necessary
condition for an S-box to be immune to differential cryptanalysis is that it does not have
large values in its differential distribution table (not counting the first entry in the first
row),

Definition 5 Let F be an nX s S-boz, where n = 3. Let § be the largest value in differential
distribution table of the S-boz (not counting the first entry in the first row), namely,

b= Max max [{z|F(z) ® F(z @ &) = 8}].
Then F is .s;az'd to be differentially §-uniform, and accordingly, § is called the differential
uniformity of f.

Obviously the differential uniformity & of an n X s S-box is constrained by 2"~* £ § < 2",
. Extensive research has been carried out in constructing differentially é-uniform S-boxes with
a low 6 [12, 1, 13, 15, 14, 2]. Some constructions, in particular those based on permutation
polynomials on finite fields, are simple and elegant. However, cautions must be taken
with Definition 5. In particular, it should be noted that low differential uniformity (a
small §) is only a necessary, but not a sufficient condition for immunity to differential
attacks. This is shown by the fact that S-boxes constructed in {12, 1] are extremely weak
to differential attacks, despite that they achieve the lowest possible differential uniformity
§ = 2"* [4, 5, 20]. A more complete measurement is the robusiness introduced in [20}.
The reader is directed to that paper for a comprehensive treatment of this subject.

Note that an n X s S-box achieves the lowest possible differential uniformity § = 2"~°
if and only if it has a flat difference distribution table. As has been noticed by many re-
searchers (see for instance Page 62 of [4]), a flat difference distribution table is not associated
with a regular S-box. This result, together a formal proof, is reviewed in the following.

Lemma 2 The differential uniformity of a regular n X s S-boz is larger than 2"~°.

Proof. Let F is a regular n X 8 S-box. By Theorem 1, nonzero linear combinations of the
component functions of F are all balanced. Assume for contradiction that for each nonzero
a €V, F(2)® F(z®a) is regular, namely it runs through all vectors in V;, each 2"~* times,
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while z runs through V;, once. Recall that Theorem 3.1 of [12] states that F(z) @ F(z @ a)
is regular if and only if each nonzero linear combination of the component functions of F
is a bent function. This contradicts the fact that each nonzero linear combination of the
component functions of F' is balanced. 0

We have discussed various cryptographic properties including the algebraic degree, the
SAC, the linear structure, the regularity, the nonlinearity and the differential uniformity.
As is stated in the following lemmas, some properties are invariant under a nonsingular
linear transformation.

Lemma 3 Let f be a function on V,,, A be a nonsingular matriz of order n over GF(2),
and let g(z) = f(zA). Then f and g have the same algebraic degree, nonlinearity and
linearity dimension.

Proof. The algebraic degree of a function is obviously not changed by a nonsingular affine
transformation on input coordinates. The invariance of nonlinearity was pointed out in [11],
while that of linearity dimension follows from the fact that linear structures form a subspace
whose dimension remains the same under the transformation. O

The next lemma was pointed out in Section 5.3 of [20]. It was also noticed by Beth and
Ding in [2]. The lemma is followed by a short formal proof for the sake of completeness.

Lemma 4 Let F be a mapping from V, to V,, where n 2 3, A be a nonsingular matriz of
order n over GF(2), and B be a nonsingular matriz of order s over GF(2). Let G(z) =
F(zA) and H(z) = F(z)B, where = (z1,...,2s). Note that A is applied to the input,
while B to the output of F. Then F, G and H all have the same regularity and differential
uniformitly.

Proof. ~ Let 8 be a vector in V,. Since F(z) = G(z4™1), F(z) = B if and only if
G(zA~!) = 8. This implies that, while z runs through V,,, F(z) and G(z) run through 8
the same number of times.

Now consider H(z) = F{(z)B. Clearly F(z) = g if and only if H(z) = F(z)}B = 3B.
As B is nonsingular, F(z) runs through 8 exactly the same number of times as that H(z)
runs through 3B, while z runs through V;,. ' a

2 Cryptographic Properties of Quadratic S-boxes

In this section we reveal interesting relationships among the difference distribution ta-
ble, linear structures, nonlinearity and SAC of S-boxes whose component functions are all
quadratic (or sxmply, quadratic S-boxes).

2.1 Linear Structure vs Nonlinearity

Consider a quadratic function f on V;,. Then f(2)® f(z®e) is affine, where z = (21,...,25)
and a € V,,. Assume that f does not have nonzero linear structures. Then for any nonzero
a € Vi, f(z) ® f(z ® @) is a nonzero affine function, hence balanced. By Part (iii) of
Lemma 1, f is bent. Thus we have:
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Lemma 5 If a quadratic function f on V, has no nonzero linear structures, then f is bent
and n is even.

The following lemma is a useful tool in calculating the nonlinearity of functions obtained
via Kronecker product.

Lemma 6 Let g(i,y) = fl(x) D fZ(y); where z = (31)' . -sxm): ¥y= (yla' "1%12); Jiisa
function on V,, and f; is a function on Vy,. Let dy and dy denote the nonlinearities of fi
and fa respectively. Then the nonlinearily of g satisfies

N, 2 di2™ + d;2™ — 2dyd,.

In addition, we have N, 2 d12™ and N, 2 d32™.

Proof. The first half of the lemma can be found in Lemma 8 of {19]. The second half is
true due to the fact that dy £ 2™~ and dy £ 272! (see also Section 3 of [18]). a

We now examine how the nonlinearity of a function on V), relates to the linearity di-
mension of the functiorn. : :
Let g be a (not necessarily quadratic) function on V,,, {B1,..., 8¢} be a basis of the sub-
space consisting of the linear structuresof g. {f1,..-,8¢} can be extended to {£1,...,8¢ Be+1s+ .., On}
such that the latter is a basis of V;,. Now let B be a nonsingular matrix with 8; as its ith
row, and let ¢g*(z) = g(zB). By Lemma 3, ¢* and g have the same linearity dimension,

algebraic degree and nonlinearity. Thus the question is transformed into the discussion of
*

g~

Let e; be the vector in V,, whose ith coordinate is one and others are zero. Then we
have e; B = [3;, and g*(e;} = g(Bi}, ¢ = 1,...,n. Thus {e1,...,e¢} is a basis of the subspace
consisting of the linear structures of g*. Write g as

g*(=) = a(y) & 3_[m;(v)r;()] (1)

where £ = (21,...,25), ¥ = (Z1,...,%¢), 2 = (Te41,...,2Zn), m; # 0, the algebraic degree
of each r; is at least 1 and r; # r; for j # 4. Also write e; as ¢; = (g;,0), where u; € Vy and
0 € Ve As e; is a linear structure of g*, the following difference

g(2)B 9" (2 ® 1) = 9(4y) © q(y & 1) & 3 _[(ms(y) & m(y © p))ri(2)]

is a constant. This implies that ¢(y) ® ¢{y ® p:) is a constant (i.e. y; is a linear structure
of ¢(y)) and each m;(y) & m;(y ® p;) = 0 (i.e. m; = 1). Thus (1) can be rewritten as

97(z) = ¢(y) & r(2). (2)

Since all vectors in V; are linear structures of ¢, ¢ is an affine function on V. As the
linearity dimension of ¢* is also ¢, r must be a function on V;,_; that does not have nonzero
linear structures. By Lemmas 3 and 6, we have N; = Ny« 2 2¢N,. This is precisely what
Proposition 3 of [13] states.

As a special case, suppose that ¢ in the above discussions is quadratic. Then the function
r in (2) is a quadratic function on V,_; with no nonzero linear structures. By Lemma 5, r

is a bent function on V,_, whose nonlinearity is N, = 27~¢-1 — 25(n~0~1_ Thus we have:
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Theorem 2 Let g be a function on V,, whose algebraic degree is at most 2. Denote by £
the linearity dimension of g. Then

(i) n— £ is even, and
(ii) the nonlinearity of g satisfies Ny 2 2*~1 — oi(n+0)-1

The lower bound on nonlinearity in Theorem 2 can be straightforwardly translated into
that for quadratic (not necessarily regular) n x s S-boxes (n 2 s).

Now we take a closer look at the nonlinearity of a quadratic function g on V,, whose
linearity dimension is £. As g is nonlinear, we have £ < n. In addition since g is quadratic, by
(i) of Theorem 2, n — £ is even. Thus we have £ £ n—2, and N, 2 2"~1 —z(n4+0-1 > 9n-2,
This proves the following:

Corollary 1 The nonlinearity of a quadratic function on 'V, is at least 2772,

Corollary 1 is a bit surprising in the sense that it indicates that all quadratic functions
are fairly nonlinear, and there is no quadratic function whose nenlinearity is between 0 and
272 (exclusive). -

2.2 Difference Distribution Table vs Linear Structure

First we show an interesting result stating that the number representing the differential
uniformity of a quadratic S-b_ox must be a power of 2.

Theorem 3 Let § be the differential uniformity of a quadratic n x s S-boz. Then 6 = 2d
for some n— s £ d £ n. Furthermore, if the S-boz is regular, then we have § = 2¢ for some
n—-s+1=5dS n.

Proof. Let F =(f1,...,fs). Let a be a nonzero vector in V. Then
F(2)® F(z @ 0) = (1() 8 fi(z ® ),.... i(2) ® /(= & ).

As f; is quadratic, fi(z) @ fi(z ® ) is affine, hence F(z)® F(z ® a) = zD ® ¢, where D is
an n X $ matrix over GF(2) and C is a vector in V.

Assume that the rank of D is r with 0 £ r £ 5. Then F(z)® F{z ® a) = 2D & C runs
through 2" vectors in V;, each 2°~" times, while z runs through V;,, where n, s and r satisfy
n—s8 £ n—r X n. Thus the differential uniformity of F takes the form of 2%, n—s £ d £ n.

The second half of the lemma follows from Lemma 2 together with the above discussions.

O

Let F = (fi,...,fs) be a regular quadratic = X s S-box, and let g be a nonlinear
combination of the component functions of F. Then it can be shown that g has at least
one nonzero linear structure. To prove the claim, we assume that g has no nonzero linear
structures. Then by Lemma 5, ¢ is a bent function. This contradicts the fact that F is
regular and that the nonzero linear combirations of its component functions are all balanced
and have linear structures.

Next we show that the differential uniformity of an S-box is closely related to the number

of linear structures of an nonzero linear combinations of the component functions of the
S-box.
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Theorem 4 Let F = (fi,...,f;) be a regular quadratic n x 8 S-box. Then the differential
uniformity of F satisfies § £ 2%+t where 1 £t £ s (see also Theorem 3), if and only if
any nonzero vector a € Vy, is a linear structure of at most 2t — 1 nonzero linear combinations

of fiy-. s Js-

Proof. (i) First we show that if § £ 2"~**, then any nonzero vector @ € V,, is a linear
structure of at most 2 — 1 nonzero linear combinations of the component functions. To
simplify our proof, it can be assumed that § = 2n—*+t, — '

Note that there are 2° — 1 nonzero linear combinations of f,..., f,, denoted by ¢4, ...,
g2:—1, and 2™ — 1 nonzero vectors in Vy, denoted by o, ..., asn_;. Now suppose that there
exist 2! nonzero linear combinations gy,...,gs¢, such that a is a linear structure of each g;.
Write g;(z) @ g;(z ® a) = a;, where @; is constant, j = 1,...,2%, Let & = {g1,...,92¢}. We
are interested in the rank of {}, namely the maximum number of functions in ) that are
linearly independent. Recall that ¢ linearly independent functions can generate only 2! — 1
distinct nonzero combinations. As Q contains 2° nonzero functions, its rank is at least ¢ +1.
Without loss of generality, suppose that g1,...,4:41 are linearly independent. Then there
exist additional s —¢ — 1 nonzero linear combinations of fi,..., f,, denoted by h¢ys,..., Ry,
such that g1,...,t+1,Pt42,. .., Ay are all linearly independent. Let G be an n X s mapping
defined by G = (g1,...,9t+1, ht42,-- -, hs). Then G can be expressed as G(z) = F(z)B for
a nonsingular matrix B of order s over GF(2).

By Lemma 4, G is also a differentially §-uniform n x s S-box. Since § = 2757t (1 £t <
- 8), G(z) ® G(z ® a) runs through at least 2"/2"~*+* = 2*~* vectors. On the other hand,

Glz)®G(z @ a) =(a1,...,0:41, h42(2) B hega(2 D a)y. .., ho(z) B hy(z B )

where @y, ..., a;41 are all constants. This indicates that G(z) ® G(z & a) runs through at
most 2°~*~1 vectors in V,. This is a contradiction.

(ii) Next we prove the other direction. Suppose any nonzero vector & € V,, is a linear
structure of m nonzero linear combinations of the component functions, where m £ 2! — 1.
We show that the differential uniformity of F is at most 2m=*+1,

Let W = {g1,...,g2:—1} be the set of the 2° —1 nonzero linear combinations of f;,..., f,-.
Let a be a nonzero vector in V;,. Note that together with the zero function, the functions in
W which have a as their linear structure form a linear space. The number of nonzero func-
tions in the set is 2¢' — 1 for some t’ < . Without loss of generality, let Uy = {g1,...,9,_,}
be the set of nonzero functions having « as their linear structure.

Since U,, together with the zero function, forms a linear space, it contains precisely
t' linearly independent functions. Without loss of generality, let ¢1,...,4y be t' linearly
independent functions. Now let hy4y,...,h, be s — ¢’ additional nonzero linear combi-
nations of fi,...,fs, such that g1,...,9¢,hp41,..., b, are all linearly independent. Set
G =(g91,---, 8¢, herg1,.. ., h,s). As a is a linear structure of g;, = 1,...,t, we have

Gz)® Gz ®a)=(a1,...,am,he 1 (2) D hyy1(z D ) ... h(2) D hy(z © a)) (3)
where each a;, = 1,...,t, is a constant.

We now show that Ay (2)D Ay (zBa),. .., ()P h,(2Ha) are linearly independent.
Suppose that hyy1(2) @ hys(2 @ @), ..., hs(z) B hy(z & @) are linearly dependent. Then
there exists a nonzero vector (¢g41,...,¢5) # {0,...,0) such that

s
> clhia)@hi(z@ )] =0. (4)

j=t'+1
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Write h(z) = Tlop4i¢ihi(z). h is a nonzero function as hyyy,...,hs(z) are linearly
independent. Thus (4) implies that o is a nonzero linear structure of h. In other words,
we have h € U,. On the other hand, since g1,...,94,9t7+1,-- - ,Js are linearly independent,
we have h ¢ U,. The above contradiction shows that hyy1(2) @ hyyi(z @ @),..., hs(z) @
hs(z & a) are indeed linearly independent.

As the s — t' affine functions hyy1(z) @ hoy1(z @ a),..., hs(z) ® hy(z & a) are linearly
independent, G{z)®G(z@®a) runs through 24—t yectors in V, each 27 /29—t = 27—+’ times.
Hence the differential uniformity of G(z) satisfies § = 2"~+* < 9"~*+*, By Lemma 4, F(z)
and G(z) have an identical differential uniformity. 0

Theorem 4 indicates that with an S-box with a smaller 4, i.e., a smaller ¢, the nonzero
linear combinations of its component functions have less linear structures. This coincides
with our intuitién that the nonlinearity of an $-box grows with the strength of its immunity
to differential attacks.

2.3 Difference Distributidn Table vs SAC

Armed with Theorem 4, we further reveal that differential uniformity is tightly associated
with the strict avalanche characteristics.

Theorem 5 Let F = (fi,...,f,) be a differentially §-uniform regular quadratic n X s S-
boz, where § = 27~°+ 1 <t < 5 (see also Theorem 3). Ift and s satisfy s £ 2°7'72, then
there erists a nonsingular matriz of order n over GF(2), say A, and a nonsingular matriz
of order s over GF(2), say B, such that ¥(z) = F(zA)B = (fi(zA),...,fs(zA))B =
(¥1(), ..., ¥s(2)) is also a differentially §-uniform regular quadratic n X s S-bor whose
component functions all satisfy the SAC.

Proof. Again denote by gi, ..., g2s—1 the 2° — 1 nonzero linear combinations of fi,..., fi,
and by o, ..., agn_1 the 2" — 1 nonzero vectors in V;. We construct a bipartite graph T'
with g1, ..., g2s_1 on one side and ¢, ..., ¢gn_y on the other side. An edge exists between
¢g; and ¢; if and only if @; is a linear structure of g;. By Theorem 4, there exist at most
2t — 1 edges associated with each a. Thus there exist at most (2¢ ~ 1)-(2" — 1) edges in the
graph T'.

Denote by t; the number of linear structures of g;, 7 = 1,...,2* — 1. Without loss
of generality suppose that ¢ £ t3 £ --- £ tyo_;. It can be seen that ¢; < gn—sti+l,
j=1,...,25"1. The reason is as follows. Suppose that it is not the case. Then we have
tyd oo Ftgeog 2 2071 2nmebtH]l — gnit 5 (98 1). (2" —1). This contradicts the fact that
T has at most 2!71 - (2" — 1) edges.

Now set @ = {g1,...,g2s-141}. As the rank of £ is s, we can choose s functions from
Q, say gj,, --- » §j,, such that they are all linearly independent. Since s £ 25-t=2 we
have t;, + +-- +1;, < §-2°7*+t+! < 971, By Theorem 2 of [21], there exists a nonsingular
matrix A of order n over GF(2), such that all component functions of (g;, (z4),-..,g;(zA4))
satisfy the SAC. Furthermore, as each g; is a nonzero linear combination of fi, ..., fs,
there is a nonsingular matrix B of order s over GF(2) such that (g;(z),..-,9;,(2)) =
(fi(z)y..., fs(z))B. Accordingly, by Lemma 4, :

¥(z) = F(zA)B = (fi(zA4),..., fs(zA))B = (¥1(2), ..., ¥s(z))

is a differentially é-uniform regular quadratic = X s S-box, where each component function
1; satisfies the SAC. , ' .
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In Theorem 5, when the differential uniformity § = 2°=%+! is small, the parameter ¢
is also small, and the condition s £ 22~%2 jg likely to be satisfied. Equivalently we can
say that S-boxes strong against differential attacks are also SAC-fulfilling, subject to a
nonsingular linear transformation. Again, this coincides with our intuition.

3 A Unified Treatment of Quadratic Permutations

This section is concerned with differentially 2-uniform quadratic n X n S-boxes. Since such
an S-box F is a permutation, F(z)® F(z @ a) takes a vector two times or does not take it,
while z runs through V, once. F has the following property: for any nonzero vector a € V4,
F(z) & F(z @ o) runs through 2*~? vectors in V,,, each twice, but not through the other
271 vectors, while z runs through V,,.

Although there are many question marks regarding the applicability of differentially
2-uniform qua,dra,t'ic_n X © S-boxes in computer security practices, primarily due to their
low algebraic degree, these S-boxes have received extensive research in the past years [16,
15, 6, 2, 14] and hence deserve our special attention. These S-boxes appear in various forms
and researchers have employed different techniques, some of which are rather sophisticated,
to prove their nonlinearity. By refining our proof techniques described in Section 2, we will
show in this section that all differentially 2-uniform quadratic permutations, no matter how
they are constructed, have the same nonlinearity and can be transformed into SAC-fulfilling
S-boxes. This greatly simplifies the proof for a number of known results and could be a
powerful tool in designing cryptographically strong block ciphers.

Theorem 6 Let F = (fi,...,fa) be a quadratic permutation on V,,. Then the following
statements are equivalent: :

(i) for any nonzero linear combination of f1,..., fa, sey ¢ = 327, ¢;f;, its nonlinearity
. I
satisfies N, 2 271 — 23(n=1),

(i) any nonzero linear combination of f1,..., fu, say g = ¥.3=1 ¢; f;, has a unique nonzero
linear structure.

(1ii) each nonzero vector inV,, is the linear structure of a unique nonzero linear combination

of firnes fo

(iv) F is differentially 2-uniform, i.e. for each nonzero vector o € V,,, F(2)® F(z @ a)
runs through half of the vectors in V,, while z runs through V,,.

Proof. The equivalence of (i) and (ii): By (ii) of Theorem 2, a quadratic function has a
nonlinearity larger than or equal to 271 — 23(n=1) if and only if its linearity dimension is
1.

The equivalence of (ii) and (iii): Let ay,...,a2n_1 be the 2" — 1 nonzero vectors in V,

and gy,...,¢2n.1 be the 2® — 1 nonzero linear combinations of f1,..., f. Similarly to the
proof of Theorem 5, we construct a bipartite graph I' with a;,...,a2n_; on one side and
g1s...,gan—1 on the other side. A link exists between a; and g; if and only if a; is a linear

structure of g;. Since each g; is balanced, it must not be a bent function. By Lemma 5,
each g; has at least one nonzero linear structure. From the construction of T', we can see
that each g; has an edge associated with it. On the other hand, for any nonzero vector,
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say o, F(z) @ F(z © a) does not run through the vector zero, as F(z) is a permutation on
V... By Theorem 1, there exists a nonzero linear combination of the component functions
of F(z) @ F(z & a), say

X":cg'[fj(w) 8 fi(z & o)), (5)

i=1

that is not balanced. Since f; is quadratic, (5) is affine. Thus (5) must be a constant. Write
9a(z) = Y7y ¢; fi(z). Then e is a nonzero linear structure of go. Thus each a has at least
one edge associated with it. In summary, each g; has at least one edge associated with it,
and so does each a;. As both sides of the bipartite graph have the same number of edges,
(ii) and (iii) must stand in parallel.

The equivalence of (iii) and (iv): First we note that the differential uniformity of any
permutation is at least 2. Let s = n and t = 1. Then By Theorem 4, F is differential
2-uniform if and only if each nonzero vector in V,, is the linear structure of at most one
nonzero linear combination of fi,..., fn. In the proof of the equivalence of (ii) and (iii),
it is has been shown that each nonzero vector in V, is a linear structure of at least one

. nonzero linear combination of the component functions, Thus F is differential 2-uniform
if and only if each nonzero vector in V; is the linear structure of a unique nonzero linear
combination of the component functions. o

In [15] Nyberg and Knudsen considered quadratic permutations on Vi, that have the
following property (P): Every nonzero linear combination of the component functions, say
g, can be expressed as g(z) = zCzT, where 2 = (21,...,2s), C is a nonsingular mairiz
over GF(2) and the rank of C®CT isn—1. They proved that if a quadratic permutation
on V, satisfies the property (P) then it is a differentially 2-uniform permutation. From
Theorem 6, we conclude that the property (P) is equivalent to (i), (ii), (ii) and (iv) in the
theorem. '

The following is another important corollary of Theorem 6.

Corollary 2 There ezists no differentially 2-uniform quadratic permutation on an even
dimensional vector space.

Proof. Let F(z) = (fi,...,fa) be a differentially 2-uniform quadratic permutation on V.
By Theorem 6, each component function f; has a unique nonzero linear structure. Hence
the linearity dimension of f; is 1, and the corollary follows immediately from Part (i) of
Theorem 2. o

This gives a negative answer to an open problem regarding the existence of differentially
2-uniform quadratic permutations on an even dimensional vector space.

Now it is a right place to point out an error in [2]. Corollary 2 of [2] states that the
permutation defined by a polynomial P(z) = £2(2*+1) i5 3 differentially 2-uniform quadratic
permutation, where r € GF(2"), £, k and n are positive integers, and ged(2F + 1,2 —
1) = ged(k,n) = 1. Beth and Ding claim that their corollary indicates the existence of
differentially 2-uniform quadratic permutations on V;,, n even. This seemingly contradicts
the non-existence result shown in our Corollary 2. However, one can see that when n is
even, k must be odd in order for gcd(k,n) = 1 to stand. On the other hand, if n is even and
k is odd, then ged(2% +1,2" — 1) has 3 as a factor. Thus ged(2% +1,2" — 1) = ged(k,n) = 1
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can not stand for n even. In other words, Beth and Ding’s corollary does not imply the
existence of differentially 2-uniform quadratic permutations on V,,, n even.

The following result has been pointed out by these authors in [21]. It is included here,
together with its proof, for the sake of completeness.

Theorem 7 Let F = (f1,...,fn} (n 2 3) be a differentially 2-uniform quadratic permuta-
tion. Then there erists a nonsingular matriz A of order n over GF(2) such that ¥(z) =
F(zA) = (fi(z4),..., fo(zA)) = ($1(2),...,¥u(2)) is also differentially 2-uniform, and
each component function v; satisfies the SAC. '

Proof. When n 2 7, it directly follows from Theorem 5. The proof described below applies
toall n 2 3.

Let @ denote the set of vectors ¥ such that f; @ f;(z @ ) is not balanced for some
1 £ j £ n By (i) and (iil) of Theorem 6, we have |[®| = n. Since |@] < 2*"! for all
n 2 3, by Theorem 2 of [21], there exists a nonsingular matrix A of order n over GF(2)
that transforms ¥ into a SAC-fulfilling S-box. : O

4 Conclusion

We have proved that for quadratic 5-boxes, there are close relationships among differential
uniformity, linear structures, nonlinearity and the SAC. We have shown that by using
our proof techniques, all differentially 2-uniform quadratic permutations can be treated
in a unified fashion. In particular, general results regarding nonlinearity characteristics
of these permutations are derived, regardless of the actual methods for constructing the
permutations, :

A future research direction is to extend the results to the more general case where com-
ponent functions of an S-box can have an algebraic degree larger than 2. Another direction
is to enlarge the scope of nonlinearity criteria examined so that it includes other cryp-
tographic properties such as algebraic degree, propagation characteristics, and correlation
immunity.
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Appendix

A Proof for Theorem 1

First we have

Lemma 7 Let L; = (hiy,...,hi2s) be the sequence of a linear function on V,, where : =
1,...,2" (n 2 s). Set
M=[LF,. . . L%}

If the rows of M are mutually orthogonal then each linear sequence of length 2° appears as
2"~* columns of M.

Proof. Let = (a,...,ass) be a (1,-1) sequences of length 2°. Since (5, L;} = ng__l aghip,
we have
(1], L,‘)z =2°4 22 apaqh,'ph.-q

p<g
and - _
2" an P id
Sn Ly =27 +23 3 apahiphiy = 27 +2) 1Y apaghiphi.
1=1 i=1 p<g p<q =1

Since rows of M are mutually orthogonal, we have 2?;1 hiphi; =0 (p # ¢) and hence

2"

> {n, Ly? = 2. (6)

i=1

Now suppose that L, an arbitrary linear sequence of length 20, appears as k columns of M.

By noting
W_J 2 L=
(L, L) = { 0 otherwise
we have
23’!
ST(L, L) = k- 2% (7)
J=1
Compare (6) and {7) we have
k . 225 — 2n+s
and hence k = 27*, O

Note that (7) can be viewed as a generalization of Parseval’s equation (Page 416, [9]).
The following is the proof for Theorem 1.

Proof. (for Theorem 1) Suppose that F is a regular S-box, namely, F(z) runs through all
vectors in V,, each precisely 2*~* times, while z runs through V;, where z = (z1,...,Za).
Then the truth table of each component function f; must contain an equal number of ones
and zeros, i.e., f; is balanced.

Now we show that any nonzero linear combination, f(z) = 3 3-;¢jfi(2), of the s
component functions is also balanced. Recall that for any nonsingular matrix A of or-
der s, (fi(2),...,fs(z)) is regular if and only if (fi(z),...,fs(z))A is (see Lemma 4).
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Now suppose that the first column of A is (c1y---re5)T. Let G(z) = (q1(z),...,95(z)) =
(fi(z), ..., f-(2))A. Then G is also regular, and hence its first component function g(z) =
f(z) = 3% ¢jfi(=) is balanced. This proves one direction of the theorem.

We now prove the other direction. Suppose that all nonzero linear combinations-of the
component functions are balanced. Let

& = (ci1y .- Cizn)

be the truth table of f;, i = 1,...,s. ;From the s truth tables, we construct 2" linear
functions on V; as follows:

;i (y) = c1jin ® caiye B -+ - D CsjYs ] (8)

where ¥ = (¥1,...,%,) and § = 1,...2".
Let '
= (bjl')"',bj?')

be the truth table of ;. Set
N = [ﬂg‘,.. .,ng;;]-

Note that N is a 2° X 2" matrix whose elements come from GF(2).

N is constructed in such a way that its rows consist of precisely the 2° different linear
combinations of &1,...,£,. To prove this is true, we take a close look at the rows of N. Let
i = (b1i, bais - - - ,bzni) be the ith row of N, 0 ¢ £ 2° — 1. Since bji = pj(a;), where o; is
the vector in V, corresponding to the integer i, we have v; = (p1(ai), @2(@i), . .., p2n(@:)).
Write a; = (ai1,. .. aij2s). Then '

3 8 8
7= (Y enai, Y ciaijye s Y Cianais)
=1

i=1 i=1

5
= Y aij{ej1,¢jzy..-5C52m)
e
8
= D i
=1

This proves that ;, the ith row of N, is indeed a linear combination of &;,...,&;. On the
other hand, since any nonzero linear combination of £1,...,& is balanced, £i,...,£s are
linearly independent. Thus v; # ; for any i # j. This proves our claim that the rows of N
consist of precisely the 2* different linear combinations of £;,...,§;.

Now let M be an matrix obtained from N by substituting 0 with +1 and 1 with —1.
Note that the sum of two different rows of N is a nonzero linear combination of §i,...,&,
and hence balanced. This implies that the rows of M is mutually orthogonal. By Lemma 7
each linear sequence of length 2° appears as 2°~* columns of M. This in turn implies that
the truth table of a linear function on V, appears as 2°~* columns of N, i.e. any linear
function ¢ on V, appears 2"~ times in the set {¢y,...9sn}, where ; is defined in (8).
As there is a one to one correspondence between linear functions on V; and vectors in Vj,
we conclude that F(z) = (fi(z),-.., fo(z)) runs through all vectors in V,, each 2"7° times,
while z runs through V. , O





