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Abstract

In this paper we will survey the principle of linearity in block ciphers. We
consider linear relationships between the plaintext and ciphertext bits, using ele-
mentary arguments from linear algebra, and then using linear relationships under
real number addition based on canonical correlation analysis. Linear structures [3]
are also examined, which are a form of linearity that leads to degeneracy in the key,
meaning that certain bits do not affect the ciphertext. We show that most func-
tions are not expected to have a linear structure, though even partial linearity in
this respect leads to a powerful attack known as differential cryptanalysis. Lastly,
we consider linear approximation as a cryptanalytic tool, and present the recent
linear cryptanalysis due to Matsui on the Data Encryption Standard (DES).

*The work reported in this paper has been funded in part by the Cooperative Research Centres
program through the Department of the Prime Minister and Cabinet of Australia.
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1 Introduction

A block cipher E is a family of encryption functions that acts on n characters of data
(usually bits), with typical values of n being in the range of 64 to 2048. The two major
properties to be considered in the design of a block cipher are (a) to minimize the statis-
tical relationship between the plaintext and ciphertext, and (b) to strongly suggest that
the key cannot be recovered in time that is significantly less than the expected cost of
exhaustive key search. First, we observe that (a) does not imply (b), in that a strong pseu-
dorandom function is not necessarily resistant to cryptographic attacks. For example, it
is known that sequences produced by linear feedback registers can be selected to satisfy
the randomness postulates of Golumb [7], but the initial register contents and tapping
information can be recovered by inspecting a small amount of ciphertext [5]. Second,
(b) is not a proof of security since this would essentially be a solution to a major open
problem in computational complexity theory [6]. Often (b) will be an accreditation given
to the cipher after a thorough, and most likely protracted, examination of its properties
by cryptanalysts; even so, it is only a conjecture that the cipher is in fact secure. On this
point, the history of DES is informative. When released in the mid seventies, IBM stated
that 17 years of research had been consumed in the design and analysis of the algorithm.
To this day, all reported ‘weaknesses’ of DES are either unlikely to occur (for example,
selecting a so-called weak key [13]), or require such substantial computational resources
to take advantage of (for example, differential cryptanalysis [2]) At present, and probably
always, DES is considered to be a very strong cipher with an ‘unfortunately small’ key
(56 bits).

In this paper we will survey three forms of statistical dependency found in block
ciphers each based on some notion of linearity. These attacks will apply particularly to
product ciphers [5] which are block ciphers built from smaller components such as look-up
tables (S-boxes S) and permutations (P-boxes P). We begin in §2 by considering linear
relationships between the plaintext and ciphertext bits, using elementary arguments from
linear algebra. We also investigate the application of canonical correlation analysis to
cryptanalysis, which examines linear relationships under real number addition. In §3 we
consider linear structures [3], a form of linearity that leads to degeneracy in the key (here
degeneracy means that when the influence of the key is modelled as a boolean function
f, certain keys bits do not affect the function). We show that most functions are not
expected to have linear structures, though even partial linearity in this respect leads
to a powerful attack known as differential cryptanalysis. Lastly, we consider a linear

approximation as a cryptanalytic tool, and present the recent attack of Matsui [12] on
the Data Encryption Standard (DES) [15].
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2 Plaintext/Ciphertext Linearity

Dependencies that exist between subsets of plaintext, ciphertext and key bits could de-
crease the cost of searching the keyspace. In one of the the worst cases the cipher is a
linear mapping, allowing the cipher to be totally determined after inspecting a relatively
small amount of ciphertext. Several such dependencies, including the linearity just men-
tioned, can be detected through statistical methods [8, 10], such as the x?-test. In the
next few sections we examine several form of linearity in block ciphers.

2.1 Gaussian Elimination

In this test we enquire if some subset of the ciphertext bits can be written as a linear
combination of plaintext bits. For X = zyz5---z, € Z} let X[i1,12,...,1,] denote the
XORsum z;,, ®z;, B---Pz;, wherel <23 <1< --- <1, <nand 1 <a < n Consider
an equation of the form

P[ilai%"-aia]@C[jl-,j‘lv"'vjb]%ao = 0 (1)

where ag € Z,, which indicates that the sum of a subset of plaintext bits with a subset of
ciphertext bits is constant (corrected to 0 by the aq term). Dependencies of the form in (1)
can be tested as follows. Select (2n+1) plaintext/ciphertext pairs (P;, C;), 1 <1 < 2n+1,
where P; = pi1,pi2 ..., pin and C; = ¢i1, ¢y . . -, Cin. Then construct a (2n4+1) x (2n+1)
matrix A matrix where the first row is all ones, and column 7 contains the bits of plaintext
P; followed by the bits of ciphertext C;. If when performing row reductions on the matrix
A a row of all zeros is encountered, then a dependency of the form in (1) must exist.

If F has a dependency of the form in (1), then the test will report it (true dependency);
on the other hand, even if E has no dependency of the form in (1), the test may report a
dependency for the given sample of plaintext/ciphertext pairs (P;, C;) (false dependency).
We could sample N matrices A, A,,..., Ay and true dependencies would be found in
each A; if they existed. However, we would like to know how large NV should be before
any false dependencies induced by the plaintext/ciphertext sample would be unlikely to
occur in all N sample matrices. To answer this question, observe that a matrix of full
rank has no dependencies. We will make the assumption that a cipher F which has no
true dependencies when sampled produces matrices A; that are random over Z, (except
for the first row). The probability that a random k& x k matrix B has full rank is

k-1

¢ = I (1-2%). (2)

1=0

Let A’ be defined as the matrix obtained from A by adding the first row of A to all other
rows that have a 1 in the first column, and then deleting the first row and column from
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the resulting matrix. Clearly, if A has full rank then the (2n x 2n) matrix A’ will also
have full rank. From eq. (2), the probability that A’ has full rank is ¢ = 0.2887 when
n = 64. Then the probability that at least one matrix in a random sample of N such
matrices will have full rank is 1 — (1 — ¢)¥. Thus by solving 1 — (1 — ¢)¥ = p we are
confident that in a sample of N matrices, the probability of producing at least one matrix
of full rank is p. For example, when n = 64, a sample of 21 matrices has a probability of
99.9% to yield a matrix with full rank.

It should be noted that each independent equation in the form of (1) reduces by one
bit the entropy between the intercepted ciphertext and the unknown plaintext. If there
are n independent such equations then the cipher is affine.

2.2 Linear Relationship Under Real Number Addition

Another method for examining linear relationships in block ciphers is to apply Canonical
Correlation analysis as was first suggested by Carlisle Adams in his PhD thesis [1, p.
91]. This method investigates linear relationships under real number addition between
two variables X and Y that are expressed as linear combinations of experimental obser-
vations (given below). Canonical analysis may be employed to determine the best linear
relationship that exists between the X and Y variables. This technique was originally
developed by Hotelling [9, p.321], and in our case will involve calculating coefficients a;
and B, plus an associated canonical correlation, A;, which measures the extent of the
linear correlation between X and Y. More general information on canonical correlation
analysis can be found in the book of Cooley and Lohnes [4, p.168].

An analysis on a sample of N plaintext-ciphertext pairs, (P, C;), 1 <@ < N, where
P; = pi1,pi2y---,pin and C; = €1, G2,y - - -, Cip, 1s performed as follows: using several co-
variance matrices (defined below), an equation with n solutions is established, where
each solution yields a measure of canonical correlation, A; and resulting weight vectors
a; and B; corresponding to the plaintext and ciphertext bit vectors. Each canonical
correlation measures the strength of a line of the form Y = a X + b to fit the set of points
(X;,Y;), where X and Y are the corresponding canonical variables. The points (X, Y;)
are expressed as linear functions of the plaintext and ciphertext bits:

Y; = ojpa+appiet o+ Qnpin (3)
Xi = Bjca+ Bjcia+ -+ + Bjncin (4)
The coefficient vectors a; = a1, 52, . .., a5, and B; = Bj1, B2, ..., Bjn are calculated so

that the corresponding correlation between the variables X and Y is maximized. The o
and B; vectors contain the weights of each bit position in the resulting canonical variables.
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The analysis requires the calculation of three n x n covariance matrices: Roc measuring
correlation between ciphertext bits, Rpp measuring correlation between plaintext bits,
and Rcp measuring correlation between ciphertext and plaintext bits. If Recl[e, 7] is the
entry for the :th row and jth column, 1 <:,7 < n, then

. 1 N _ _
Receli, ] = N_o1 Y (eki — Ci)(exj — Cj)
- k=1
_ 1 i
Ci = =) ¢
N k=1

where C; is the sample mean for ciphertext bit ¢;. The matrices Rpp and Rcp are
similarly defined:

Rppli,j] = f: (pki — Bi)(pes — P;)
"
RCP[ivj] = N 1 l?—-:]c}m ka P)
_ 1 N
o= 5 Z_:

Also, let Rpc = RLp be the transpose of Rcp. The analysis involves the calculation of
n eigenvalues and eigenvectors of the equation

(Rpp - Rpc - Rgt - Rop — A\jl)e; =0 (5)

where A; is the eigenvalue corresponding to the vector of weights a; subject to the
condition that a;T-Rpp-a; = 1. The corresponding vector of coefficients 3; is determined
from the equation 3; = REIC - Rep - aj - \//\_] Each value of A; determines a canonical
correlation which measures the strength of a linear relationship Y = a X +b corresponding
to the set of points (X;, Y;), determined by substituting a; and 3; in eq. (3) for the sample
of N plaintext-ciphertext pairs chosen.

Observe that 0 < \; < 1 with A\; = 1 indicating 100% correlation, for which all
calculated points (X;,Y;) lie on a straight line. For each value of ); the resultant line
Y = aX + b is obtained using statistical regression analysis and determines the line-of-
best-fit relating to the sample of plaintext-ciphertext pairs chosen.

Our analysis of this method shows that its application to block ciphers can be used
to determine the existence of equal Hamming weights between subsets of plaintext and
ciphertext positions in a cipher, with 100% correlation. This occurs, for example, in
a transposition of plaintext to ciphertext bit positions. Canonical Correlation analysis
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aims to find a relationship between plaintext and ciphertext so that some part of the
plaintext may be determined from an intercepted ciphertext. Unless the cipher exhibits
the properties to yield 100% correlation, different samples of plaintext-ciphertext pairs
will yield different canonical correlations );, different coefficient vectors a; and 3; and
different linear equations Y = aX + b, for the same key.

Each equation determined from this analysis, as in the method of Gaussian Elimina-
tion, will yield one bit of information between plaintext and ciphertext bits. A number
of equations would be desired to give sufficient information to effectively determine suffi-
cient plaintext bits from any intercepted ciphertext. A similar analysis could be carried
out by combining the plaintext and ciphertext vectors to represent the X variable and
the key vector as the Y variable. The number of solutions is limited by the length of the
smaller variable, Y. Linear relationships relating plaintext and ciphertext bits to key bits
would be more useful in determining information about the key. This method could be
applied to the S-boxes of newly developed ciphers emulating DES or the internal func-
tions of symmetric block ciphers, to determine the existence of linear equations under
real number addition. As expected, the S-boxes of DES yielded such equations with very
low canonical correlation measures.

3 Linear structures

A divide-and-conquer attack on the keyspace of a cipher is a method for partitioning the
key bits into d > 1 distinct sets w;,ws,...,wy such that each set w; can be searched
independently. If such a partition can be found then the cost of testing all possible keys
becomes O(Q"”") steps where w* = maxj<i<q w;, rather than O(2|w1|+|w2|+"'+|wd|) steps
by obvious methods. Such a partition will exist if, for example, a known subset of the
ciphertext depends on only k out of m key bits, will permit the key to be recovered in
approximately 2F 4+ 2™=F steps. We see that if k &~ m/2 then the key can be recovered in
time which is approximately the square root of the time to perform exhaustive search.
We will examine a class of boolean functions, known as functions with linear structures,
that admit divide-and-conquer attacks of this type. These functions have been used
by Chaum and Evertse [3] to perform an attack on DES that is faster than exhaustive
search when DES is reduced to less than 8 rounds. In what follows, we will represent an
n-bit boolean function f as a polynomial f(X) € Z;[z1, 22, -, Z,], called the Algebraic
Normal Form (ANF) of f.
Recall that p-linear functions were defined as

f(X) = g(al, 2. zy) + Y, myzi,. (6)

1<5<k
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Equivalently, if e; is the zth unit vector, a function f is p-linear in k variables if there exists
aset B={by,ba,...,bx} C {e1,ea,... . ex} such that for all b; € B, f(X)& f(X +b;)
is invariant for all X € Z}. Here e; € Z} is the :th unit vector. Linear structures are
an extension of p-linearity in that B is an arbitrary subset of Z}'. The relation between
p-linearity and linear structures is given in the next lemma.

Lemma 3.1 (Lai [11]) Let by, bg,...,byg be a set of linearly independent linear struc-
tures for the n-bit function f, where 1 < k < n. Then there exists an n x n matrix
M with coefficients over Z; such that if g(X) = g(z1,22,...,2.) = f((z1,22,...,2,)M)
then the ANF of g(z1,z2,...,2,) is given as

Q(X) = rymi+Tame+ -+ Tpmg + 9($k+1,$k+2, . 7xn) (7)

where m; = f(b;) @ f(0) € Z; for 1 <: < k.
]

Corollary 3.1 Let by, ba,..., by be a set of linearly independent vectors. There are
22""+k n_bit functions for which by, ba,. .., by are linear structures.

Proof. By Lemma 3.1 let by = e;, 1 < ¢ < k, without loss of generality. However it
follows from eq. (7) that there are 2¥ ways to choose the m;, and 22" ways to choose
the (n — k)-bit function g. O

Thus if f is a function that has linear structures by, bs. ..., by, an appropriate basis
change for Z} transforms f into a p-linear function. The cryptanalyst can take advan-
tage of the linear structures in f if some of the m; in eq. (7) are zero, which will eliminate
the influence of some variables (possibly key bits) on the ciphertext.

Example 3.1 The 4-bit function f has b = 1110 as its only linear structure where
f(X) = x4 2122 + 2123 + Tox3 + 374 + 17274 + T123T4 + L2374

Define M as the matrix

1 110
1 0 0 1
M= 1101 ®)
0010
If g(z1,22,...,2n) = f((z1,22,...,2,)M) then
9(X) = z3+ zox4 + 2374 + T27324.

As the first column of M is b, then e; is a linear structure in g, and g is degenerate in
xy as f(b) = f(0) = 0. 0
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Let £LS™ be the set of n-bit boolean functions that have a linear structure b # 0. O’Connor
[14] has shown that most functions do not have linear structure, and in particular, that

lim [£8™|/((2" = 1) -2+ = 1. (9)

4 Linear Cryptanalysis

We will now give a short exposition on a new method for cryptanalyzing DES based on
linear approximation due to Matsui [12]. The basis of the attack is finding approximate
linear relationships between certain bits in the plaintext, ciphertext and key. Recall that,
for X = 2125+, € Z3, X[t1,1%2,...,1,] denotes the XOR sum z;, @z, @ -- @ z;, where
1<i1<iz<---<ig<nand 1 <a<n. Let P be a plaintext, C its ciphertext, and
K the key used to encrypt P. Consider an equation of the form

P[il,iQ,...,ia]@C[j],jz,...,jb] = Iﬁr[kl,kg,...,kc] (10)

where the LHS is equal to the RHS with some probability p. This means that if we fix the
key K and consider all possible plaintexts, then XORing certain subsets of the plaintext
and ciphertext bits equals a certain XORed subset of the key bits with probability p.
Intuition would suggest that if the bit subsets are selected randomly then the probability
of eq. (10) being true should be close to 1/2.

Let the cryptanalyst have a sample of N plaintext/ciphertext pairs F;, (5, all en-
crypted under the same key K. Let there be 0 < T < N pairs for which the LHS of eq.
(10) is equal to 0. Then consider the following procedure to determine K[k, ks, ..., k],
which Matsui has called the ‘maximum likelihood method’:

If T > N/2 then
guess K[ki, ko, ..., k] =0 when p>1/2or
guess K(ki,ky, ..., k] =1 when p < 1/2
else
guess Klky, ks, ..., k;]=1when p>1/2or
guess Kki, ks, ..., k] =0 when p<1/2.

The reasoning behind the method is quite straightforward: if a majority of the plain-
text/ciphertext pairs in the sample of size N give the LHS of eq. (10) to be zero and
the probability of the LHS equaling the RHS is less than one half, then guess the RHS
to be one (the complement of the RHS). Similar reasoning prevails in the case where a
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minority of the sample gives the LHS of eq. (10) to be zero. It should be clear that this
method is more likely to succeed as the value of p moves away from 1/2.

When the maximum likelihood method makes a correct prediction we obtain 1 bit
of information about the key (namely the value of the XOR of ¢ bits of the key). So
to gain a significant amount of information about the key we would then require several
relations of the form in eq. (10). By approximating S-box S5 we find that

Ri15) @ K:[22] = F(R:, K)[7,18,24,29) (11)

with probability 12/64 = 0.19. For 3-round DES, using this approximation in the first
and third rounds we have that

PL[7,18,24,29] & Pr[15] & CL[7,18,24,29] @ Cg[15] = Ki[22] & K3[22]. (12)

is true probability p = (12/64)% 4+ (1 — 12/64)? = 0.70, and is of the form desired for eq.
(10). Similarly for 5-round DES, Matsui has found that the approximation

PL[15] & Pg[7,18,24,27,28,29,30,31] & CL[15] & Cr[7. 18,24, 27,28, 29,30, 31]
= K,[42,43,45,46] & K,[22] & K,[22] ® Ks[42.43,45,46]. (13)

holds with probability 0.519.

We still need to determine when the maximum likelihood method is expected to
correctly predict the sum of the key bits. Recall that the maximum likelihood method
operates on a sample of N plaintext/ciphertext pairs. The success (correct prediction)
of the method will increase the larger NV becomes since our sample probabilities are more
likely to be close to the true probabilities. It is natural to ask how large N needs to
be before we expect the maximum likelihood method to make the correct prediction say
90% of the time. Using the normal distribution Matsui gives such estimates and they are
listed in Table 1. Using these results, if given (|0.519 — 2|)~2 = 2800 plaintext/ciphertext
pairs, the maximum likelihood method can predict the key bits in eq. (13) with 97.7%
success. The attack can be modified to yield more than one bit of information about the
key, and the reader is referred to Matsui’s paper for details.

N il (4 il R U
Success rate 84.1% 92.1% 97.7% 99.8%

Table 1: The success rate of the maximum likelihood method.
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5 Conclusion

In this paer we have examined several forms of linearity as applied to cryptanalysing
block ciphers. We began with considering how to detect if the ciphertext was a linear
transformation of the plaintext, or if a similar relationship holds between proper subsets
of the plaintext and ciphertext. The notion of linear dependency is extended by using
canonical correlation in §2, but this approach appears only to be useful in detecting
permutation mappings. Any attack attempting to exploit correlation due to linearity
merely by observing a large number of plaintext-ciphertext pairs is unlikely to succeed.
That is, designing statistical tests to detect linearity without taking into account the
internal structure of the cipher are unlikely to detect any correlation.

On the other hand, the internal mappings used in a product cipher, the S-boxes,
are much smaller in size than the block size. It is quite possible to select S-boxes that
exhibit linear dependencies and not contradict the enumeration results above since they
are asymptotic. Differential and linear cryptanalysis have shown that poorly chosen S-
boxes can lead to attacks on product ciphers even when the ciphertext itself may be highly
nonlinear. The cryptanalyst need only attack the cipher round by round, establishing and
extending dependencies from one round to the next, hopefully inducing some correlation
in the ciphertext. This suggests that the designer not only construct a highly nonlinear
cipher, but must select highly nonlinear S-boxes to achieve this. For example, each S-box
should have a linear correlation as close to one half as possible.
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DES can be Immune to Linear Cryptanalysis

Kwang-jo Kim Sang-jin Lee Sang-jun Park Dai-ki Lee
ETRI, KOREA

Abstract In this paper, we propose the necessary conditions how to strengthen
DES S-boxes against linear cryptanalysis. Combined with our design criteria
of DES S-boxes against differential cryptanalysis presented in JW-IS(93 [5],
we show that the total security of DES against both linear cryptanalysis and
differential eryptanalysis can be improved.

1 Introduction

Two ways of eryptanalysis have been published in the open literature, which can break DES [1]
more efficiently than kev-exhaustive search. They are the differential cryptanalysis[2],[3] by
Biham and Shamir and linear cryptanalysis[3] by Matsui in 1990 and 1993, respectively. Dif-
ferential cryptanalyvsis is more efficient than key-exhaustive search when a set of input XORed
values are probably correlated with the ontput XORed values. Thus, differential cryptanalysis
belongs to a chosen plaintext attack in a sense that the attacker should choose a particular set
of input values.

On the other hand. linear cryptanalysis tries to find the partial key information so that a lin-
early approximated expression holds. Linear eryptanalysis can be said to be a known plaintext
attack. The complexity to break DES by linear cryptanalysis is about 247, A ciphertext-only
attack is also possible when the plaintext consists of 7-bit ASCII codes only, where the com-
plexity to find 7 keyv bits of the 16-round DES is about 1.82 x 253 Descriptions on the linear
cryptanalysis in detail can be found in [3]. In SCIS'94 [9], Matsui improved the linear crypt-
analysis method of the 16-round DES and showed that the reduced complexity is about 243,
The common point of two attacking methods is to use the cryptanalytic properties of DES
S-boxes.

In JW-ISC93 [3], we have suggested an additional design criterion of DES-like S-boxes so
that DES can be resistant to differential cryptanalysis. t.e.. S(z) # S(x & 11ef10) for any
DES S-box S. Onr criteria are shown [6]. [7] to lead to a simple and robust strengthening
method of DES against differential cryptanalysis. Biham [4] suggested that the security of our
DES. denoted as “s?DES”™. can be improved from linear crvptanalvsis if the order of Sl-box
and 52-hox are reversed. The original order has almost the same strength as of DES against
linear cryptanalysis. When reversed. it becomes 2'* times secure. Some order. for example,
32145678, makes s’DES weaker. This requires that the order of S-hoxes in DES F-function
should be considered carefully to improve for the immunity of DES to linear cryptanalysis.
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Thus, to withstand DES against linear cryptanalysis, we focus ourselves on how to redesign
DES S-boxes including their ordering requirements.

Like differential cryptanalysis, an attack by linear cryptanalysis is to be successful if any
n-round linear iterative approximation holds with high probability. If this probability is low
enough compared to the current DES. the linear cryptanalysis is no more efficient than the
key-exhaustive search.

In this paper, we discuss the uniformity of a linear distribution table in a DES-like S-box
and the necessary conditions to strengthen DES S-boxes against linear cryptanalysis. We also
suggest that how to locate S-boxes in a specific position of DES F-function.

2 Preliminaries

The folloiving notations are adopted throughout this paper and the rightmost bit is referred to
as the zero-th hit.

e [, : The input value of i-th round in DES F-function.
e (); : The output value of i-th round in DES F-function.
o N;: The key value of i-th round in DES F-function.

o X[Z] = +4ezX[k]. where Z C {0.1..... 17} aud XT[A] is the A-th bit of X which is one
of [,’, ()i and /\’,‘.

o «, : The hexadecimal value of «.

o 1 (a): The Hamming weight of a.

For w.y € GF(2)". x ey denotes the dot product of & and y.

Definition 1 (Linear distribution table) Fora gicen DES S-bor S. we define NS(a, 3) as
the number of times minus 32 out of 04 input patterns of S, such that an XORed value of the
input bits masked by o coincides with an XORed value of the output bits masked by /3, that is
to say,

NS(a.3) = #{r e GF(2)°lrea=5(x)e s} —32

where o € GF(2)% and 3 € GE(2)*. We refer the complete table for every o and 3 to be the
linear distribution table as shown in Figure 1. For a specific S-box, S; (1 = 1,...,8), we denote
its linear distribution table as NS;(a.3).

Definition 2 (Linear approximation) For a given expression [[Zy] = O[Z,] = K([Z3] with
probability p+ 1/2. this linear approvimation (s denoted as
A 1[Z)). K [Zs) — O]Zy] with p.

We denote this erpression as A.B. .-+ Also 6(A) denotes the set of S-bores necessary to
express A and #o(4) = [6(4)].
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1 2 15

L1 0 0 0
21 x X X
3210 0 0
3310 0 0
631x x : : : X

Figure 1: Linear distribution table of DES S-boxes

Example 1 In DES. the following linear approximation from NS5(10,, f.) = —20/64 holds
A o I[15]N[22] — O[7.18.24.29] with — 20/64.
Then, 6(A) = {S5-box}and #6(A) = 1. a

To attack n-round DES by linear cryptanalvsis in general. we need to find the useful linear
approximation of (n—1)-round DES. When the linear approximation of (n—1)-round DES holds
with probability ¢ = p + -}, the number of plaintexts which the attacker needs are about |p|=2
by Lemma 2 in [3].

Thus. a linear approximation of [5-round DES is necessary to break the full 16-round DES.
When this approximation holds with probability pqs. the necessary condition that linear crypt-
analysis is no more efficient than kev-exhaustive search is p7? > 2%, ie., [p1s] < 272,

In order that DES can be resistant to linear eryptanalvsis. it is necessary to find S-boxes which
make the probability of any linear approximation small. We may rearrange other components
like P-permutation or E-expansion in DES F-function so that DES can be resistant to linear
cryptanalysis. This. however, cannot be a solution against differential cryptanalysis because
they are linear (i.e.. they do not atfect the complexity of differential cryptanalysis).

We have checked a set of linear distribution tables of random DES-like S-boxes through
computer experiments. It was possible to obtain occasionally such an S-box that the maximal
absolute value in its linear distribution table is smaller than 16. Note that the maximal entry
of absolute values in the linear distribution table of S5-hox and S6-box in DES are 20 and 14,
respectively. This characteristic of DES $5-box is a fundamental tool to break DES by linear
cryptanalysis.

Anyway it is reasonable to fix the allowable maximal absolute value of linear distribution
table to be 16. As a rule of thumb. we set up the first condition as below :

Condition 1 The allowable marimal absolute value in a linear distribution table of any S-box
must be less than [0,
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3 Uniformity of a Linear Distribution Table

The next question is how the values in the linear distribution table of a DES-like S-box to
be distributed. In this section, we discuss the uniformity of the linear distribution table in a

DES-like S-box.

Definition 3 (Walsh transform) For a given Boolean function f(z): GF(2)"* — GF(2), the
Walsh transform of f, denoted by F. s given by;

Plw) = % (=1/@- (-1

c€GF(2)"
where w € GF(2)".

Definition 4 (Nonlinearity) Let f(x): GF(2)" — (GF(2) denote any Boolean function. De-
fine

d(f. L) = #{ee GF2)": f(r)# L.(x)} and
e(f. L) = #{leeGF2)": fle)=L.(r)}

wherve L,(x) = we.x is an arbitrary lincar function.
Then,

F(w) = 2" =2d(f.L,)
2

d(f, L) is also called as a noulinearity of any function f which means a distance from a
set of affine functions and L,. can be considered to be some form of linear approximation of a
function f.

Theorem 1 (Parseval’s theorem [11]) For any Boolean function, f: GF(2)* — GF(2),

welGrF(2)n =
We can obtain the following corollary due to Parseval's theorem.

Corollary 1

weGF(2)n -

For a given function, [ : GF(2)" — GGF(2)". f can be expressed in terms of m Boolean
functions, fi. fo..... fooas [ = (fiifoeo.o. fo). For 3 = (... 3.) € GF2)™, Ls(f) -
GF(2)" — (F(2) can be defined as helow :

ni

Lf) = Y fi-3
=1
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By Theorem 1. for any 3 € (7 F(2)™,

| —

WEGF(2)" =

Thus for all g € GF(2)™,

G(Lw, Ld(f)) - 2"-1 - 9m
> 2 ¢ ==

omn
BEGF(2)™ weGF(2)? <

This can be interpreted as any Boolean function should have a linear distribution table with
nonzero entry. The linear distribution table of DES S-boxes which can be considered as 15
Boolean functions has always nonzero entry.

Next, we compute the average value and variation of the linear distribution table for any
Boolean function.

Theorem 2 For any Boolean function. f(x) : GF(2)" — GF(2). the average value, m, of
Se) = e(f. L) = 2" is equal to 1/2 or —1/2 and its varviation. o*. is equal to 2"~ — 1/4.

Proof:
ZH(U—‘) _ ZF(_:U)
1
- - —_ V@) Lule)
= 522 (=0
_ ! L)y _ 1))
= 3 E(E 0=
1
— (1 flo)yn
= 2( )7
Thus,
oz itfm=o
T =12 it f) =L
Since 3, S(w)?/2n =272 gt =27 2]/, 0

The following result is based on a series of computer experiments.
Conjecture 1 For any permutation : GF(2)" — (F(2)*. the entry values in a form of its
linear distribution table are bounded within 4 - 2"/~ (i.c., 40) and the mazimal absolute

value varies around 4o.

This conjecture indirectly tells us that Condition 1 is a reasonable constraint.
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4 TIterative Linear Approximation

As the number of round in DES increases, the probability of linear approximation rapidly
decreases. It will be impratical to find all inear approximations. Any iterative characteristic is
a very useful tool to do a linear cryptanalysis successfully as in differential cryptanalysis. Using
an iterative linear approximation with high probability, we can find a partial key information
by linear cryptanalysis efficiently than by key-exhaustive search.

Definition 5 (nR iterative linear approximation) The n-round (simply, nR) iterative lin-
ear approzimation is defined as

II{ZI] & In[Zn] = I\'2[Z2] SRR $ 1\’71—1 [Zn—1]~

For the consecutive n-rounds, the XORed values of n-2 keys in an (n-2)-round can be expressed
by its input and output XORed values. When this expression holds with probability ¢ = p+1/2,
the probabiity of thes inear approxvimation is to be p. Also, we denote nR iterative linear ap-
procimation as — Ay -+ A, _y— and its concatenated crpression as — Ay Ay —Ap_y - A —.

Example 2 Let two linear approximations A and B he

A2 N[ Z5) — O[Z,). (1)
B:1[Z,). K[Z) — O]Z]. (2)
From Equs. (1) and (2). we get
[2[21} - ()3[2_)] = ]\’-_)[Z;g]. (})
LIZ)+042) = K24, (4)
Since
LZ,) = LZ,) = 0.[Z)] (5)
13[21] :— ]4[21] = ()3[21] (())

XORing Equs. (3), (4). (5) and (6) term by term, we end up with a 4R linear approximation
after cancelling common terms:

[1[2_)] - 14[2]] = l\’g[Z:s] - 1\’:3[24]‘ (

-1
~—

By concatenating Eq.(7). we can get a TR linear approximation as follows:
[][Z«_)] - 17[2_)} = 1\'-_)[2;;] - 1\’3[24] = 1\’5[24] = ]\’(5[2:5].
0

By Lemma 3 in [8]. if we find an nR iterative linear approximation with probability p, then
we can also obtain (A-(n—1)+1)R linear approximation with probability 2571 )% when applying
nR iterative linear approximation & times.

In this section. we discuss the probability of 3R. 4R. 3R, and nR ( n > 6) iterative linear
approximations to prevent DES from being broken by a successtul linear eryptanalysis.
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4.1 3R Iterative Linear Approximation

The 3R iterative linear approximation has a form of I[Z,]4I3[Z1] = K1[Z,], i.c.. there exists a
linear correlation between key and outpnt subblocks without input subblock as 0;[Z;] = K;[Z,).
This case always occurs when a repeated input of two outer bits to a DES S-hox are given to
two neighbouring S-boxes. Thus, we can build the 3R iterative linear approximation from this
case.

Theorem 3 There exists a 3R iterative linear approximation if and only if the input of Si-box
and the input of S(i+1)-box are 3, and 30, respectively.

If NS;(3z, ) and NS;41(30,,/3;) are not equal to zero, we can build some 3R iterative linear
approximations. From the 3R iterative linear approximation —A— with probability p, we can
build the 15-round linear approximation as :

-4-A4A-A-A-4-A4-A-
and the total probability for this approximation to hold is 25p".

Example 3 In DES. VS-(3,. f

iterative linear approximation is

= 8. NS5(30,.d,) = —12. where the probability p of 3R
S -2

: i f’f Using this probability, the total complexity.,
("ompy, to break the full-round DES by linear cryptanalysis is

)
9.

C'ompy = (2“|1,[7)‘2 = ()7 = 2t

o

Thus. the necessary condition that this attack is no more efficient than key-exhaustive search
is 2°p|” <278 e |p] < 274 In other words,
2. NS ) NS (30, )

04 64

In [3], we suggested an additional design criterion for constrncting DES-like S-boxes against
differential cryptanalysis. ie.. S(e) # S(w=11e fg0) for any e fg. If any DES-like S-box satisfies
- this eriterion. the values of NN(30,..9) and NS(31,..9) are to be zero for any /3 so that the
LHS of Eq. (8) is always equal to zero.

| < 2 (8)

Condition 2 S(x) # S(x = 1lefg0) for anyefg.

4.2 4R Iterative Linear Approximation

We discuss cases when a 4R iterative linear approximation occurs from two given linear ap-
proximations such as,
A 12[21] 1\'2[2;3} E— ()2[22] (9)
B 13[}1] ]\’:}[Y:';] — ()3[}2] (10)
If we linearly approximate the 2nd ronnd and 3rd round function of DES to A and B, respec-
tively. 1,[Z,] should must be equal to the XORed value between the 3rd round output and
4th round input. and [5[Y7] should be equal to the NORed value hetween the st round input

and 2nd ronnd ontput in order to get an useful 4R iterative linear approximation (refer to

Example 2).
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Theorem 4 By concatenating two lincar approximations Eqns. (9) and (10) with probability
p1 and p,, respectively, the condition for building a 4R iterative linear approximation is

Zy=Y2.Zy =Y.
Then, the 4R iterative linear approximation is of the form
L{Z)) = IL|Z)] = Kj[Zs] = N3[Y3) (11)
with probability 2p,p,.

If the 4R iterative linear approximation —AB— with probability p is given, we can build the
15-round linear approximation as

—-AB—-BA-AB- BA- AB.

The necessary condition that this attack is no more efficient than key-exhaustive search is
|24 <27 el |p] < 2704,

We can obtain the best 4R iterative linear approximation when #6(A) = #6(B) = 1. This
means that the output of Si-box equals the input of Sj-box at the next round and the output
of 5j-box equals the input of Si-box at the previous round. If the corresponding probabilities
are pp and p,, respectively, the total probability of the 4R linear approximation is 2p;py. Thus,
valiues of py and py should be less than 277, However. values of p; and p, must be zero when
we consider a SR iteration linear approximation. which will be discussed in the next section.

Condition 3 The followings (18 cases in total) are necessary so that the R iterative linear
approximation will not occur.

o Sl-bor : NSi(4.4) = NSi(2.2)=0
o S2bor : NSy(4.4) = NS,(2.1)=0

o S3-bor i NSy(8.4) = NS5(4.8) =0

-

o Si-bor i NS(8.4) = N8,(2.2) =0
o S5-bor : NS5(16.1) = NS5(8.8) = V85(2.4) = 0
o S6-bor : NS5(16.4) = NSy(4.8) = VSe(2.2) = 0

o S7-boxr : NS-(4,8) = NS;(2.1)=0

o S8bor : NSg(16.1) = NSs(2.4) =0

If we choose DES-like S-boxes satisfving Condition 3. the possible 4R linear approximations
will be as in Table 1.
Let each probability of 4 cases he pyr.opy. ps.and py. Al pi(i = 1.0 .. 4) mnst be less than

2238 =% in considering 5R

since |22 py papspy| < 2794 These probabilities should be less than 2
iterative linear approximation. which will be discussed iu the next section. Moreover. since the
output (or inpnt) of an S-bhox is equal to an input (or output) of two different S-boxes, the

Hamming weight between imput and ontput of an S-box must be less than or equal to 2.
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Table 1: Possible cases of 4R linear approximation

Case | Source S-boxes | Destination S-hoxes
| Si Sk and/or S
2 Sy Sk and/or S
3 Sk St and/or Sy
4 Sl St and/or Sy

Condition 4 Fora € GF(2)® and 3 € GF(2)*.
W(a).W(3) <2 = |NS(a,d)| <38

If we build linear approximation with more than five S-boxes. the holding probability
|24p1 papspaps| must be less than 27°%4 and we guess that there exists at least one S-box such
that [N S(a.,3)] < 12 among five S-hoxes.

Thus, if we can find DES-like S-boxes satistving both Condition 3 and Condition 4
simultaneonsly. the linear cryptanalvsis with the 4R iterative approximation would be less
efficient than kev-exhaustive search.

Example 4 In DES. the following 4R iterative linear approximation holds :

L{0) — O[3] & N8g(2.8) = =2,
13[3] —_— ()1[0] . .'\'3'7(4(\) = 4.

Based on these approximations. the total complexity, C'omp,, to break the full-round DES by
linear cryptanalyvsis is to be

(ompy = (34(|i__2|)3)—2 — 981
i 064 64

4.3 5R Iterative Linear Approximation

In [8], Matsui showed that DES can be broken within the complexity of 247 using 5R iterative
linear approximation.

Theorem 5 When three linear approrvimations are given by

At L2 KalZy) — 04]2)]
O LX) R [XGS]) — O41X).

we can obtain a 3R iterative linear approrimation only if Zy = Yy, = X1.Y) = Z,UX, - Z,NX,,
and the 3R derative linear expression —AB(C'— (s of the form

L{Z2) = L[Xs) = K25 = Ka[Y) = K X3).
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Example 5 In DES. we know 3R iterative linear approximation — ABC — as

A ¢ I[15], K[22] — O[T, 138.24] with 10/64
B I[29]. N[44] — O[15] with — 2/64
CcI[15), K[22] — O[T, 18.24.29] with — 20/64.

The total probability is equal to 2773, !

Using the 5R iterative linear approximation —ABC —, we can build 15-round linear approx-
imation as
—ABC —(CBA—-ABC - DE.
The probabilities of D and E will be less than 272 by Condition 1. If the probability of
—ABC—is p, |p|> must be less than 272 ie.. |p| <2794,
If three linear approximation (AB(C’) in 5R iterative linear approximation consists of only
three S-hoxes. each probability must be less than 272®. In order to satisfy this,

INS(a. )] <4 with ' (a) =1 (12)

where a € GF(2)° and 3 € GF(2)*.

When a = 10,. we could not find any DES-like S-boxes satistving Eq. (12) through computer
experiments. Thus, other design condition except Eq. (12) should be considered. However, if
the 3R iterative linear approximation consists of linear approximation from three S-boxes.
then Y3 = | since Zy = Y, = X and #6(A) = #4(B) = | from P-permutation in DES
F-function. By the same reason. |Y1| = | because #6(B) = | and the input of B is a subset
of A or (. Also. we cannot build a 5R iterative linear approximation with nonzero probability
which consists of three S-boxes satisfving Condition 3 because §(A) = §(C) = {Si-box} and
6(B) = {Sj-box}. Moreover. if DES-like S-boxes satisfy Condition 3, we cannot build a 5R
iterative linear approximation with nonzero probability which consists of four S-boxes, i.e.,
8(B) = {Sj-box.Sk-box}. Thus. we can build a 3R iterative linear approximation consisted of
more than five S-hoxes.

Let 6(.A4) = 6(C") = {Si-box.Sj-box} and §(B) = {Sk-box}. the probability of linear approx-
imation from Si-box and Sj-box at the 2nd (4th) round be py and py (py and ps). respectively.
and the probability of linear approximation at the 3rd round from Sk-box be p;. Then, the in-
put of the Sk-box coming from the ontput of Si-hox and/or Sj-box will have a Hamming weight
less than 2. By Condition 4. p3 will be less than 22, thus there will be one bit difference in
the output of Si-hox (Sj-hox) at the output of 4 ((7).

Condition 5 Fora € GF(2)%. 3, and 3, € ((F(2)*.
W(a)=1and W (3 = 4,) =1 = |NS(a.3))  NS(a. 1) <48

When the above condition is given. pypy (and/or paps;) < 27%4 The probability of this 5R
g ] 2p3) <
iterative linear approximation is
4 Db 9= =3 =2 =2 _ =04
2 prpapapapsl <2027 2700700 27
Thus Condition 5 is necessary in order that linear cryptanalysis by 5R iterative linear
approximation is less efficient than key-exhaustive search. For a given 5R iterative linear
approximation (—.4;.4,.45—) consisted of five S-boxes. if the probability of linear approximation
coming from one of S-hoxes is less than 2724, then the probability of —A4; 4, 43— will be 2794
by Condition 1.
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4.4 nR Iterative Linear Approximation

We can generalize from 3R iterative linear approximation into nR iterative linear approxima-
tion. When n — 2 linear approximations are given below :

A2 : 12[}(2], 1\,2[)’2] —_— ()2[22] with P2
A:; : [3[)(3], 1\'3[}1;3] _ ()3[23] With D3

An—l : In—l[)\,n—l]; [\'n—lD/n—l] — ()71—1[271—1] With Pn-1,
then we can obtain an nR iterative linear approximation in the form of
]l[Z‘Z] o4l [n[Zn—l] = I\"Z[Y’Z] ST 1‘,[71 - 1][)/11—1]

only if Xp = Z4 107441 = Zica U Ziy — Zijod N Zjgy for b = 34 n—2 X, = Z3, and
X1 = Z._y. The total probability is 2“7* ] py -+ p,_;. For the 16-round DES, n=6,7 and 8§
are possible cases. In these cases. we can concatenate this nR iterative linear approximation in
order to do a successtul linear attack. If we can lower the total probability. then linear attack
for DES will be difficult.

In [10], Matsui suggested a way of linear approximation for DES called as “Type-I approx-
imation”which means that any nR linear approximation can be derived when at most one
S-box is approximated in a single round. Due to Condition 3. however. nR iterative linear
approximation with nonzero probability like Type-1 approximation cannot be obtained.

5 Concluding Remarks

In this paper. we proposed five necessary conditions in order to immunize DES S-boxes from
linear cryptanalysis. If we find DES-like S-hoxes satistving these additional five conditions, we
can conclude that DES with new S-boxes is resistant to linear cryptanalysis and differential
cryptanalysis as well. Even if new S-boxes are substituted into the current DES S-boxes, the
key-exhaustive search machine suggested by Wiener[12] can be valid for a successful attack
of new DES. Against this attack. we suggest that the key scheduling part of DES can be
redesigned to increase the current DES key size.

In the full paper. we will suggest new DES-like S-boxes satisfying our conditions and discuss
the complexity of new DES against both ditferential cryptanalysis and linear cryptanalysis.
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Abstract

Recently Matsui [2] announced an attack on the DES algorithm.
The attack relies on approximation of S-boxes by linear functions. To
find out the best linear approximation, Matsui defines the linear ap-
proximation tables (LAT) for S-boxes. In this work we examine the
relation between Matsui’s linear approximation tables and nonlinear-
ities of corresponding S-boxes.

Introduction

The recent cryptographic attack introduced by Matsui [2] relies on the ap-
proximation of S-boxes by linear functions. For a given S-box, every output or
linear combination of outputs can be approximated by linear functions. Mat-
sui showed how to find the best linear approximation for the S-boxes used in
the DES algorithm and how to use this to break the algorithm. However there
appears to be some misunderstanding of the relationship between this attack

*Support for this project was provided in part by the Australian Research Council

under the reference number A491131885
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and the significance of the linear approximation tables (LAT), introduced by
Matsui. In this paper we will explain the relation between nonlinearity and
the linear approximation tables. We prove that linear approximation tables
give the nonlinearities of every linear combination of output functions. Hence
the design criteria for S-boxes now has to include an extended measure of
nonlinearity of S-boxes; in particular this measure must be consistent with
the measure introduced by Nyberg in [4]. Some preliminary comments about
the influence of linear cryptanalysis on the design of S-boxes can be found in

[9].
2 Background

We denote by z € {0,1}* = X" a binary string of length n. A Boolean
function f is defined as a mapping

f: X" — X.
The set of all n-variable linear Boolean functions is
La={f|f: X">X;f=a1z:®... ® axz.},

where a; € {0,1} and z; € X for i = 1,...,n, and @ is the Exclusive-OR
operation. The set of n-variable affine Boolean functions is

An=A{f1L€ L f=LDao}

where ag € X.

Any Boolean function f(z) can be represented in the form of a truth
table. The table is described by the following vector

f(.’l,‘) = (fovfl’“"f?”-—l),

where f; is the value of the function f (e;) and ¢; is the binary representation
of the integer ¢; i.e., i = Y7, 2 'ai[j] and o; = (aill], ..., ai[n]).

Definition 2.1 The Hamming distance between two Boolean functions

f,g: X" — X, is defined as

d(f,9) = wt(fo ® go, fr ® G1,---, faro1 ® gan—1),

where wt(a) is the weight-the number of ones of the binary string o € X™.

The nonlinearity of Boolean functions is defined as, (see also [1],(3],[4],[6])-
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Definition 2.2 The nonlinearity N(f) of a Boolean function f : X™ - X
s

N(f) = mind(4, f),

i.e., is the minimal distance between the function f and the set of affine
functions.

Nonlinearity can also be expressed in terms of the Walsh transform F (u)
of f:
o1 |F (Wl
N(f)=2"" = max——
see [8].

Definition 2.3 A (n x m) S-boz is a collection of m functions Fi(z),
t=1,...,m, in n Boolean variables ¢ = (z1,...,z,) for which

S(z) = (Fi(z),..., F.(z)).
The next definition is taken from Matsui’s paper [2].
Definition 2.4 A linear approzimation table LAT for a S-boz S(z) is
LATs(e, ) =#{z |0 <z < 2" -1 (69 zi]e aft])) = EB(S Bl
=1

where o is the bitwise AND operation, z = Y% ,2"'z[i] and a =

i1 27ali] (2[d], ofi] € X).
The nonlinearity of a (n x m) S-box S(z) is (see Nyberg [4])

N(S(l‘)) mlnw—(wl ..... wm)EX™; uEXN(wlFl D.. 0w Frn ® ’0) (1)

3 Properties of Linear Approximation Ta-
bles

A binary string a = (a[l],...,a[n]) generates a linear function ¢,(z) € L,
defined as

L(z) = 110[1]® ... B z,a[n].

Also a binary string 8 = (B[1],...,08[r]) gives a Boolean function Sg(z)
defined as the linear combination of output functions of a S-box:

Sp(z) = Fi(z)Bll] @ ... & Fu(z)B[n].
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Lemma 3.1
LATs(a, B) = 2" — d(€4(z), Sp(z)). (2)

Proof : The (a,f)-entry of the LATs table indicates the number of ar-
guments z for which the values of £,(z) and Sg(z) coincide. On the other
hand, the distance d(£,(z), Sg(z)) gives the number of arguments for which
the two functions differ. Thus equation (2) holds. O

Lemma 3.2 For a fized vector B € X", the following inequality holds

VaexnN(Ss(z)) < LATs(a, B) < 2" — N(Ss(x)). (3)

Proof : ;From equation (2) we have

min LATs(a, 8) < 2° — d(ta(z), 55(2).
Note that
min d(£a(2), Sp(2)) = mind(é(z), 55(z))
but this is

2" — N(Ss(z)) otherwise,

where £,,;,, is a linear function for which

mind({(z), S5()) = d(bmin, Sp(2))-

{N(Sﬂ(l‘)) if bnin € Ly;

a

The (a, B)-entry specifies the closest linear function which approximates
Ss(z). Since the linear functions £,(z) comprise the whole of L,, it follows
that there must be an a* which gives best approximation to the function
Ss(z), moreover

it 9= | 7R ®

So we have the following theorem.

Theorem 3.1 For every function Ss(z), the best linear approrimation is
given by the function £,+(z), moreover expression (4) holds.

This theorem has the following corollaries.
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Corollary 3.1 Let S(z) = (Fi(z),...,Fu(z)) and B be a combination of
functions F;(z) such that Ss(z) is affine, then there is a single a* such that
LATs(a*,8) = 0 or 2™. The other entries of the table are: LATs(a, ) =

21 where a # a*.

Example: Consider GF(2*) and the field automorphism o : z — z?.
Since o is a linear operation, the linear approximation table has the form:

16

00 00 00 00 00 0O Q0 00 00 0O 55 00 00 OO 00
Q0 00 00 00 0O 00 00 0O Q0 Q0 00 I OO 0O QO
00 00 0D OO OO0 QO QO OO0 00 OO 00 00 QO
00 00 Q0 00 OO 5 OO GO Q0 00 0O QO OO QO QO
& 00 Q0 00 0O OO 00 0O Q0 00 0O QO 00 0O QO
00 &, 00 00 00 Q0 00 00 Q0 0O 00 QO OO 00 OO
00 00 Q0 00 {53 Q0 00 0O 00 00 Q0 Q0 OO OO QO
00 00 00 00 OO 00 0O 51 G0 QO 00 00 00 QO QO
00 00 |5, 00 0O Q0 00 0O 00 Q0 0O Q0 OO OO QO
00 00 00 &5y 00 00 00 0O 00 QO OO Q0 0O OO QO
Q0 00 00 00 0O 0O &) QO OO 00 0O GO 00 0O QO
00 00 00 0O OO 0O 00 OO Q0 0O 00 QO 00 3 QO
00 00 OO0 00 0O 0O 00 0O 53 00 00 GO QO 0O QO
oooooooooo‘oooooooogoooooooooo
00 00 00 00 00 OO QO 00 Q0 0O 00 00 I 0O QO

oo

It is easy to see that every function Sz(z) can be represented by a linear
function (where the corresponding entry is 2* = 16).

Corollary 3.2 ;From a given LATs(a, ), it is possible to recover all the
nonlinearities of Sp(z) by selecting the minimal and the mazimal values from
the column LATs(a, 3); a € X™. Denote these two values by LATs(amin, B)
and LATs(Qmaz,B). Then the nonlinearity of Ss(z) is min(LATs(min, B),
2" — LATS(amax, :B))

Corollary 3.3 The nonlinearity of S(z) is
N(5(z)) = min N(Sp(X))- (5)

4 Linear Approximation Tables of Permuta-
tions

In this section we assume that m = n and S(z) = (Fi(z),...,Fu(z)) is a per-

mutation. Therefore S(z) has an inverse: S~1(z) = (F7(z),...,F; 1 (z)).

The following theorem describes the relation between the linear approxima-
tion tables of S(z) and S~'(z).

Theorem 4.1
LATs(a,B) = LATs-1 (B, a).
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Proof : The definition of LATs(a, 3) states that

n

LATs(a,f) =#{z [0 <2 < 2" - 1; (@(w[i]'a[i])) = (D(S(=)ls] ¢ BUII))}-

j=1

Since our S-box is a permutation we can count the number of output values
y = S(z) instead of z = S~'(y), this does not change the entries LATs(c, 3).
Therefore

LATs(a,B) = #{y|0<y<2" -1
(B(S~ ()] e afi]))) = (D (yli] » 8L}

=1 =1

= LATs-1(B,a).

O

Corollary 4.1 If £,(z) is the best linear approzimation of Sp(z) then £5(z)
is the best linear approzimation of S;'(z).

There have been several definitions proposed for the nonlinearity of per-
mutations. In earlier work, see [7], the nonlinearity of a permutation was
defined as the minimum value of nonlinearities of the components; so

Nwy(S(2)) = min N(F(2)),

where S(z) = (Fi(z),..., Fu(z)).

But there are permutations whose every component is highly nonlinear,
and yet some components of the inverse permutation have low nonlinearity.
In view of this it was concluded that the appropriate measure of nonlinearity
of permutations should be

Ney(8(2)) = min (N(Fi(z)), N (F(2),

where S~(z) = (Fy ' (z),..., F71(z)) is the inverse of S(z).

Regarding the linear approximation attack of Matsui (2], it is obvious
that the nonlinearity of a permutation should be defined using its linear ap-
proximation table, or equivalently by definition (1) (see Nyberg [4]). Assume
that

y=_, max | LATs(a,8) — 2" |

a,f=1,...,2" -

then the nonlinearity of a permutation S(z) is

N(S@)=2"" -7 (6)
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It is obvious that
Nwy(S(z)) 2 Ny(S(z)) 2 N(S(2)).

The nonlinearity M'(S(z)) can be obtained from the LATs table by selecting
the column (indexed by 3) which has the the smallest nonlinearity

N(S(@)) = ,_mis_ M(Ss()). (™

The same value can also be obtained by selecting the row (indexed by a)
with the smallest nonlinearity, so

N($7Hz)) = _min  N(S7%(z)). (8)

a=1,...,2"%-1

Therefore N'(S(z)) = N (S~1(z)). (Compare this with Theorem 1 in Nyberg
[4].)

Example: Consider the cubing permutation in GF(2*). The linear approx-
imation table for this permutation has the following form.

10 10 10 10 10 10 12 8 8 6 8 6 8 6 6
10 6 6 10 10 6 8 8 8 10 12 6 &8 10 10
10 10 10 6 6 6 8 8 8 6 8 10 12 10 10
6 6 10 6 10 10 8 8 12 10 8 10 8 6 10
10 6 6 10 10 6 8 8 8 10 12 6 &8 10 10
6 10 6 10 6 10 8 12 8 10 8 10 8 10 6
10 6 6 10 10 6 8 8 8 10 12 6 8 10 10
6 10 6 10 6 10 8 12 8 10 8 10 8 10 6 .
10 10 10 6 6 6 8 8 8 6 8 10 12 10 10
10 10 10 6 6 6 8 8 8 6 8 10 12 10 10
6 6 10 6 10 10 8 8 12 10 8 10 8 6 10
10 10 10 10 10 10 12 8 8 6 8 6 8 6 6
10 10 10 10 10 10 12 8 8 6 8 6 8 6 6
6 10 6 10 6 10 8 12 8 10 8 10 8 10 6
6 6 10 6 10 10 8 8 12 10 8 10 8 6 10

The smallest entry is 6 and the largest is 12, so the nonlinearity is min(6, 16 —
12) = 4. All pairs (a, §) with entries 12 give the most effective approximation
of Sg(z) by the complement of the linear function £,(z).

5 Conclusions

The core of Matsui’s [2] linear cryptanalysis is the linear approximation table.
We showed that these tables not only give nonlinearity profiles of the output
functions, but also characterize the nonlinearities of their linear combina-
tions. In view of Matsui’s attack designers of S-boxes now have to include an
additional requirement related to the nonlinearity of S-boxes. The nonlinear-
ity of a S-box is the the smallest nonlinearity of the linear combinations of
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output functions — this definition of nonlinearity was introduced by Nyberg
[4]. To make an encryption algorithm resistant to linear cryptanalysis, it is
necessary to use S-boxes of the highest possible nonlinearity.

Note that linear cryptanalysis fails if all the entries are 2*~!. Thus we
should design S-boxes so that their linear approximation tables contain en-
tries close to 2"~!. There are two independent ways of achieving this. The
first way is to design S-boxes with the highest possible nonlinearity (getting
the best design for a fixed size n of the S-box). The second way is to de-
sign S-boxes for a large parameter n, as nonlinearities grow asymptotically
to 21, It turns out that even a random selection of S-boxes, for a large
enough parameter n, can generate a highly nonlinear box ([5]).
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