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Abstract — In this paper, we present an approach to analyzing cryptographic protocols using
coloured Petri nets. Petri nets provide a graphical specification of a protocol showing the flow
and control of information within and between protocol entities. A Petri net model produces
a formal description and is used as a basis for evaluating protocols. An explicit intruder
model is developed and used to formulate attacks on the legitimate protocol entities. From
these attacks, a state diagram is generated. Protocol objectives and modelled assumptions are
used to define a set of insecure states. These insecure states are used in the backward state
analysis to look for security flaws. We apply our analysis methods to two protocols which
use symmetric key cryptography: a published protocol by Hwang [1] and a similar protocol
in an ISO working draft [2]. We then verify that the cryptographic protocol does not reach
the insecure states defined above. The protocols are also compared and we issue a warning
about a possible weakness in the Hwang protocol.

1 Introduction

1.1 Specification and Analysis of Cryptographic Protocols

In this paper, we use Petri nets as a formal method to produce a graphical specification for
cryptographic protocols using symmetric key techniques. The Petri net and its associated tools can
be used effectively to analyze cryptographic protocols for security weaknesses in the face of an
intruder attack. The Petri net methodology is based on a well established tool which can also be
used to analyze general protocol properties (e.g., liveness, deadlock, livelock, and boundedness) [3].

There are other formal methods being used to analyze cryptographic protocols. These methods
include finite state machines (FSMs) [4], logics {5], and term rewriting [6]. Two of the more recent
popular methods are the term rewriting and the logic methods.

The term rewriting model described by Meadows in [6] and [7] to analyze private-key protocols
is an adaptation of the public key model. The method is designed for analyzing the security
properties of term rewriting systems using algebraic term rewriting operations. In this method,
cryptographic protocols are modelled as a set of possible intruder actions. A drawback to this
method arises from having to realize all possible intruder actions, in order to make the analysis
complete.
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In logic methods, such as BAN developed by Burrows, Abadi, and Needham 5], the protocol
and its goal are mapped to a set of logical assumptions which are based on knowledge and belief
in the protocol. The assumptions are then analyzed using formally defined inference rules to
determine whether the goals of the protocol are derivable.

The Petri net method we use is versatile in the sense that it can be used both as a tool to
specify protocols and to analyze their security. Furthermore, Petri nets can be used to model
all types of distributed systems, not just protocols. While it is generally recognized that logic
methods do not give explicit protocol specifications, Petri nets, however, do. An explicit protocol
specification can provide warnings of improper use of the protocol, identify remaining ambiguities
in the specification, and determine unspecified protocol actions.

Because a Petri net is both a graphical tool -as well as a mathematical tool, the benefit of
utilizing Petri nets is two fold. Firstly, because the Petri net is a graphical representation of a
protocol, it allows one to easily follow the flow of messages within and between protocol entities.
Any protocol operation can be modelled by a Petri net diagram.

" Secondly, another benefit derives from analyzing the flow of tokens in the Petri net. The state
of a Petri net is based upon the distribution of tokens over the system. A Petri net diagram is a very
compact representation of a system. In fact, the corresponding FSM has a number of states which
can be exponential in the number of places in the Petri net diagram. The system states form the
basis for a method of state analysis called backward state analysis. Starting from a known insecure
state (e.g., a secret session key is divulged), it is possible to determine, by working backwards, if
that state is reachable. If that insecure state is reachable, then a security weakness exists.

A related method for analyzing the state of the system is the use of forward analysis (reachability
analysis). In [8] [9] [10], a forward reachability analysis of the Petri net model produced a full
reachability tree containing all reachable states within the system. An exhaustive search through
the tree was performed to determine if an insecure state could be reached. For a large system,
the analysis suffers from state explosion, where the number of states increases exponentially. One
can “prune” this tree by applying the acceptance criteria of the protocol entities to the intruder.
Hence, the intruder can only generate messages which will be accepted by the protocol entities.
This technique leaves only those branches that result in a successful completion of the protocol
[10]. One of our goals is to automate the verification of cryptographic protocols modelled using
coloured Petri nets. '

1.2 Petri Net Basics

Petri nets, first described by Carl Petri in [11], are a useful tool for specifying and analyzing
a variety of distributed systems, including cryptographic protocols [8] [9] [10] {12]. An ordinary
Petri net is a directed graph with two kinds of nodes: places and transitions, connected by directed
arcs. A place, drawn as a circle, represents a condition in the system, and a transition, drawn as a
rectangle, represents the occurrence of an event in the system. Tokens, drawn as black dots, occupy
places to represent the truth of the associated condition. The distribution of tokens over the Petri
net is called a marking, which represents the state of the system.

A transition is enabled and can fire when each of its input places contains at least one token.
When a transition fires, an event has occurred within the system, and a change in the system state
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occurs. Figure 1 shows an ordinary Petri net and its change of state resulting from the firing of
transition T2. According to the transition firing rules, one token is removed from each input place
and one token is added to each output place.

There are three other conventions which require explanation. Firstly, the doubled-headed arrow
between P, and T, means that place P, is acting both as an input place and an output place so a
token will be removed as transition T fires but then replaced. Secondly, the small circle attached
to Ty changes the arc between Ty and Py. That arc is now a composite of an ordinary arc and an
inhibitor arc. This means that transition Ty cannot fire again until the token in Py has been cleared
by transition T, as shown in Figure 1 (b). Lastly, transition Ty represents a *‘source” transition,
meaning it can generate tokens at will.

Input/Output Input/Output

T P2 T P2
1 1
Input Cutput Input Output

D—-@——— Event —-O 3——O—— Event ——@

Py T2 Py Py Tz Py

Before event transition fires After event transition fires

@ )

Figure 1 Transition firing rule for Petri nets.

As an extension of ordinary Petri nets, coloured Petri nets have been developed to produce
more compact and manageable descriptions. In a coloured Petri net, a place can host tokens with
different meanings (i.e., colours). Each place and transition has an attached set of colours. When a
transition fires, tokens are added and/or removed from places, as in ordinary Petri nets. However,
there is a functional dependency between the colour of the transition which is firing, and the colour
of the tokens involved. Hence, only a certain colour (or set of colours) will enable any given
transition. The colour of a token often represents a complex data value, and can change with the
firing of a transition. For these reasons, coloured Petri nets are suited for a wide range of distributed
systems [13]. For more information on ordinary and coloured Petri nets, see {3] [13] [14] [15].

1.3 Intruder and Protocol Entity Modelling

A cryptographic protocol should be designed to combat attacks from an intruder who has control
of the communications medium and tries to insert, modify, delay, or delete partial or complete
contents of the messages transferred over the channels. To verify whether a protocol actually has
the desired properties that can protect the system against intruder attacks, we need to model these
attacks and test the performance of the protocol under these attacks.

A coloured Petri net model of a cryptographic protocol is composed of protocol entity modules
and possibly an intruder. The protocol entity modules are derived from the protocol descriptions
detailing the information flow between and within protocol entities, as first described in [8]. Large
rectangles called modified or “super” transitions, represent protocol entities. They are connected
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to the rest of the system through small boundary transitions called ports. A high-level or “black
box” Petri net diagram is shown in Figure 2.

Figure 2 High-level or “black-box” view of intruder attacking protocol entities.

The intruder model is composed of dedicated intruder processes, each designed for a specific
message in the protocol. Each intruder process has access to the intruder’s information resources
during an attack. The information resources contain extracted information from intercepted mes-
sages and from the protocol specification. Each intruder process has the ability to intercept a
message from the channel, delete it, return an altered version back to the channel, or synthesize a
spurious message and inject it into the channel. We assume that the intruder has complete knowl-
edge of the protocol, a record of previous transactions between the protocol entities, and the ability
to perform any operation defined in the protocol. We further assume that the intruder has no direct
access to secret information such as secret keys stored within a protocol entity.

Spurious
Message
Indicator Modified
Meossage 1 Message 1
A, B, E[C; K] T ABEec;un
information Spurious
Rasources Message
Modified Indicator
Message 2 Message 2

Intruder

Figure 3 Low-level view of intruder model, with information flow.

As first described in [10] and [12], a low-level intruder model with an example information
flow is shown in Figure 3. In this example, the intruder receives the input message {A, B, E[C ;
k]} where A and B are messages sent in the clear and E[C ; K] represents a message, C encrypted
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under the key, k. Since the message may be manipulated by the intruder, the output message
will be shown as [A, B, E[C ; k]} to indicate that each variable in the message may have been
modified. The symbol tilde (7) indicates that the variable could be either modified (circumflex, *)
or unmodified (no accent on variable).

1.4 Backward State Analysis

Our method of modelling and verifying cryptographic protocols with coloured Petri nets and
backward state analysis appears to fall in both the Type I and Type II classifications given by
Meadows in [6].

The Type I classification comprises a group of techniques that attempt to model and verify
a protocol using specification languages and verification tools not specifically designed for the
analysis of cryptographic protocols. Coloured Petri nets can be considered a specification language
because a coloured Petri net model gives an explicit protocol specification. Furthermore, Petri nets
were not originally developed for the analysis of cryptographic protocols [11]. Hence, coloured
Petri nets meet the criteria for this classification.

The Type Il classification comprises a group of analysis techniques that does not guarantee that
the investigation of a protocol’s security is complete. These techniques, however, can be used
successfully to identify either known or previously unknown flaws in a protocol. Qur backward
state analysis technique seems to meet the criteria for this classification.

Backward state analysis of a cryptographic protocol involves two steps:
identifying insecure states that may or may not occur and

performing a separate backward state analysis for each insecure state to test if each particular
insecure state could exist or not.

N

The insecure states could be any action that constitutes an unintended or improper use of the
protocol (e.g. a secret key is divulged to an intruder, a legitimate user accepts an invalid message
as correct, etc.). When the insecure state is identified, we must look exhaustively for a state path
from that final insecure state to a valid initial state. If a path exists, given our intruder model, then
the insecure state is reachable and hence, that insecure state could occur. If no path exists, then
the insecure state is unreachable and hence, that insecure state could not occur. Other possible
insecure states must be verified individually through the same backward state analysis technique.
That means performing an exhaustive state search from the chosen insecure state to a valid initial
state. Although this method of analysis may not identify all insecure states, from our experience,
this method may prove useful in identifying security weaknesses in cryptographic protocols.

2 Hwang’s Scheme for Secure Digital Mobile Communications

Although Petri net analysis can be applied to different types of cryptographic protocols, we are
most interested in mobile communications because of the potential for fraudulent usage and our
interest in secure wireless communications. Our work will attempt to verify the correctness of the
Hwang protocol [1]. This protocol was chosen as an example for our method of specification and
analysis for two reasons: it is designed for use in a digital mobile communication system and its
structure is similar to an ISO working draft protocol [2].
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The purpose of this protocol is to efficiently distribute a secret key for any two terminals in
the system in such a way that any user can log in to any terminal and communicate with any
other user at another terminal in a secure way. From the coloured Petri net model of the Hwang
protocol, given in Figure 4, a protocol run is initiated when a user (User A) wishes to have secure
communications with a second user (User B). User A initiates a call by sending the message {ny,
ID,, IDy) to User B from the output port. User B then adds the nonce nj to this
message and forwards the modified message to the Server S. The Server then generates a session
key, SK, for the two parties to share. Both users get a copy of the session key, encrypted under
their own individual secret key (K, and Kj). Both users will receive these encrypted messages and
will decrypt them using the secret keys contained in the IC cards.

User A User B

n, 10,0,

A3

Elng, 10, |
SK; Kpl,

E{M ; SK]

A1Q

E[n,, 1Dy, SK; K, 1,
E[n,. ID, . SK:K, } (s

E[n,. 1D, . SK ; Kp]

Ky=1(IDy)

Figure 4 Petri net model of the Hwang protocol.

For all coloured Petri net diagrams, all places holding non-permanent data are designated with
a letter-number pair (e.g. A3, Bl, C4). This numbering scheme is also used to define the states
in the backward state analysis. It should be pointed out that in Figure 4, the 2 located between

the transition and place S3 (in the Server entity) implies that the transition generates
two tokens and places both in place S3.
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2.1 Analysis of the Hwang Protocol

After applying intruder attacks on this protocol, whereby an intruder entity is placed between
legitimate protocol entities, our analysis found a weakness in the authentication stage of the protocol.
An intruder was introduced between legitimate protocol entities to intercept and otherwise tamper
with transmitted messages. A situation was discovered whereby User A may accept invalid messages
as being correct. This came as a result of investigating the possible outcomes of altering one or
both of the plaintext messages in Message 1 (A3=(ny, IDy, IDy}) and Message 2 (B4={ny, ID,,
nz, IDb])

Final State -

User A accepts Incorrect data B3=ny,iD,,n2, Dy, Ad4=Elnp, 10,4, 5K Kp] A8=SK
Ba=ny,1D,.np, Dy, Al=ny, Ad=Efnp,IDs, SK;Kp) AB=ny,IDp,SK
53:;1,|B..R2.|Db. Al=ny, MtE[?\z,lD.,SK:Kb]. AS=E[nq , 1Dy . SK ¥, )
Message modifled
Server Responss by In u_ﬂ o
B3=niy,D4.n2, 1Dy, Al=ny, S4=Efnp, 1Dg.SK:Kp]l S5=Eln; IDp . SK:K,]
B3+nq,Dq.np, Dy, Al=ny, Si=hy,Dp, S$3<8K, S4=E[f,, D,.5K:Ky]
B3=ny, 1D 4, N, 1Dy, At=ny, S1=ny,iDp, S2-7p,ID,, $3=SK, SK
Ba‘;h;)..nz.‘Db, A1=ﬂ1, S1-n1,IDb. SE=;2,ID,
. Message modified
User B Forward Request by Intruder
Ba=n;, D4, na, Dy, Al=ny

Bi=fy, I0,. Dy, B2sns, Afang

B1=51. I0,.IDy. Al=nyg

Message modified
Send Request by Intrud
Al=ny, A2=nq,iD,,0p
Initel State Al=ny

Figure 5§ Backward state analysis results from attack on Hwang protocol.

Hence, in the backward state analysis diagram in Figure §, we have identified as an insecure
state, the acceptance of an invalid message in User A. From this final insecure state, a backward
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state analysis was carried out. Working backwards through the previous states, a full state tree
was developed from the final insecure state to a valid initial state. Hence, the insecure state was
reachable and could occur. Next, a modification symbol (7) was placed over every variable in the
top line of the backward state analysis. This was to determine the maximum extent of modified
messages that would still result in User A accepting an invalid message.

Because the protocol could fail if certain messages were modified, we applied the acceptance
criteria of the protocol entities to the intruder to determine which messages could be modified and
which could not. The acceptance criteria forces the intruder to only generate messages which will
be accepted by the protocol entities. This has the effect of removing the modification symbol from
certain variables and messages. Hence, the results given in Figure 5§ represent the full extent of
modifications that would still lead to the insecure state described above.

Other insecure states have been identified as candidates for backward state analysis. For
example, a situation may arise whereby User A believes it is authenticating User B but in fact
is authenticating another user altogether. This fraud may be accomplished by modifying Message
1 (A3={ny, ID,, ID}}) and Message 2 (B4={n;, ID,, ny, ID}}). By changing IDy to ID. in
Message 1 and ID, back to ID,, in Message 2, User A will believe it is authenticating User B, but
in fact is authenticating User C. Although User C has been improperly authenticated, it will not be
able to read any messages because it still lacks User B’s secret key, Ky. The reachability of this
- insecure state was tested for and verified using a separate backward state analysis tree.

The protocol was also analyzed, using a separate backward state analysis tree, to see whether
User B could be deceived in a similar way as User A. An intruder or legitimate protocol entity
could impersonate User A and send to User B an incorrect source ID. User B would have no way
of knowing the true identity of the sender. The protocol would then proceed normally., At the
end of the protocol run, User B would believe it had correctly authenticated the user that matched
the original source ID sent to it. In reality, it would have authenticated an untrustworthy user or
an outside intruder. :

2.2 Security Equivalence in Hwang’s Protocol

Security equivalence refers to a property exhibited by certain protocols that share the same
level of security. In the case of Hwang’s protocol, certain modifications can be made without
altering the level of security provided. Specifically, by changing the path of some data, the result
is a more conventional information flow without a loss in security. By changing the path of the
second half of the message in S6 (i.e. E[ny, ID,, SK ; K3]) to be directed to User B instead
of being routed through User A, a more natural and efficient protocol results, without an adverse
affect on security. Furthermore, this modification makes Hwang’s protocol even more similar to
the ISO working draft protocol.

3 An ISO Working Draft Protocol

The ISO has proposed several mechanisms in [2] for key management using symmetric
techniques. The mechanism we have chosen to include here is Key Establishment Mechanism
8 — one of the twelve mechanisms proposed for standardization from the above document. The
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Petri net model of the ISO working draft protocol is shown in Figure 6. It was chosen over the
other mechanisms because of its similarity to the Hwang protocol.

Trusted Third
Party T

User A User B

senboy
SAINY

-1
pues

E[R,.SK B: K\ )
E[Ry, R, ;8K

J

Blo

Aydoy
aAlR0H

Figure 6 Petri net model of ISO working draft protocol.

Aside from the presence of a third party, there are many other similarities. For example, both
protocols have one user initiate the protocol run by contacting the desired party (e.g. User A calls
User B); both protocols use the third party to generate the session key, SK; the third party shares a
different secret key with both entities in both protocols; both protocols attempt to provide mutual
authentication; and both protocols prevent replay attack through the use of random numbers or
nonces. Furthermore, if Message 3 from the ISO working draft protocol were directed to User A
instead of User B, and Message 4 was removed, the path of the message flow would be identical
in both the ISO working draft protocol and Hwang’s protocol.

In this mechanism, User A initiates a call by sending a request to User B from the
output port. User B then sends a message to the third party, which generates a session key for
both users to share for the duration of their call. The session key is then distributed to both users
through User B. The messages containing the session keys, Messages 3 and 4, are verified upon
receipt by Users B and A, respectively.
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3.1 Analysis of the ISO Working Draft Proposal

An intruder attack was applied to this protocol. The results of an attempted attack are shown
in the backward state analysis in Figure 7. The failed attack results are given below because we
could not find a flaw/weakness in our analysis of this protocol.

To perform the backward state analysis on this protocol, a final possible insecure state was
identified to show that this state could not be reached, and, hence, that no security flaws could
be found. In the analysis shown, we chose the final state (I7=(E[Rp, SK, B ; Kar], Rp, SK,
Al)) to be the intruder learning the session key, SK. This was accomplished by having the intruder
attempting to impersonate User B at the reception of Message 3 from the Third Party, T. The attack
failed because the Intruder, I, could not successfully impersonate User B or any of the legitimate
protocol entities due to a mutual authentication mechanism designed to prevent impersonation.

Final State -
Key Learned by Intruder ~ A'=B1=R,, I7=E[Rg, SK.B K ,r] Rg, SK.A

Intruder Unsuccessful

|

Attempted Intruder Impersonation A1=B1=R,, 12=R, Ry, I4=E[E[R,, 5K B;K,r]. Ry, SK A Kgr]

Third Party Response  A1=B1=R,, B2«R,.Rg. T6=E[E[R,.SK B:K,5] Ry, SK A;Kgy]

A1=Bi=R, B2:-R, Ry TS=E{E[R . SK, B:Ksr] Rg. SK A;Kgy]
A1=B1=R,, B2:R,,Rg T2=Rg, A, T4=E[R,,SK.B:Ku]
A1=Bi=R,, B2-R,,Ra, T2:-Rg. A T3=R,,SK
A1=Bi=R,, B2=R,,Rp, Ti=R,, T2=Rg, A

Useor B Forward Request Ai=B1=R,, B2=R, Rp B3-R,,Rg A
A1=Bi=R,, B2=R,.Rg
A1=B1=R,
Send Request  Al=A2=R,

Inital State  Ai=R,

Figure 7 Backward state analysis results from attack on ISO working draft protocol.

Apart from not being able to learn the session key, SK, the intruder is not able to learn the
secret keys, Kar or Kpr, for the reason that they are kept secret. Furthermore, the protocol uses
random numbers to prevent replay attacks. However, an intruder, using its given capabilities from
our model, can still disrupt communications for the legitimate protocol entities.
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4 Conclusions

The protocol specification and analysis method presented in this paper is capable of providing
a graphical specification of cryptographic protocols and their threats. Used in conjunction with
the backward state analysis technique, our method allows a protocol to be analyzed for potential
security weaknesses.

Two protocols were chosen for analysis: the Hwang protocol and an ISO working draft protocol.
These protocols were chosen, firstly, for their application to mobile communications and secondly,
for their similarity to each other.

A Petri net model was developed for both the Hwang protocol and the ISO working draft
protocol, describing the information flow within and between protocol entities. An intruder model
was placed between all protocol entities. A series of system states were derived from the Petri net
diagram. Backward state analysis was carried out for both protocols.

The backward state analysis technique detected insecure states in the Hwang protocol. One
insecure state permits legitimate protocol entities to accept incorrect information. This could lead
to the incorrect authentication of either protocol entity. Two other distinct insecure states were
identified and verified. Furthermore, an equivalent and more efficient model was suggested for
the original Hwang protocol, based on security equivalence criteria. This modification would give
the protocol a more conventional information flow. Our analysis of the ISO protocol found no
security flaws or weaknesses. That is, based on our intruder model, no paths could be found from
an insecure state to a valid initial state.

5 Status of the Research Project

This paper reports on ongoing research into the application of Petri nets and backward state
analysis to the specification and verification of cryptographic protocols. Although more work needs
to be done, we have not yet discovered any fundamental limits to the method.

Some of the aspects that we are currently, or planning on, pursuing include:

+ investigating automation of the backward state analysis technique,
« looking at systematic methods for identifying larger classes of insecure states,

» introducing a database into the intruder entity to analyze the effect of this capability for attacks
on multiple iterations of a protocol, and

» studying the complete forward analysis of a protocol to show that, given the intruder model,
no insecure states that have been identified can be reached.
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Abstract

We present a logic for analyzing cryptographic protocols. This logic encompasses a unification
of four of its predecessors in the BAN family of logics, namely those given by Gong, Needham, and
Yahalom {1990), Abadi and Tuttle (1991), van Oorschot (1993}, and BAN itself, i.e. Burrows, Abadi,
and Needham (1989). We also present a model-theoretic semantics with respect to which the logic is
sound. The logic herein captures all of the desirable features of iis predecessors and more; nonethe-
less, it accomplishes this with no more axioms or rules than the simplest of its predecessors.
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