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Abstract

It is observed that time-variance is necessary in one-pass key establishment
schemes. A weakness originally present in the Nyberg-Rueppel scheme can be re-
moved by integration of a time-variant parameter to it. The recently proposed one-
pass French scheme is shown to have a similar weakness. It is unknown whether
it can be repaired. A new time variant one-pass key establishment scheme, whose
security is not dependent on the basic Diffie-Hellman problem, is presented.

1 Introduction

For authenticated key establishment schemes three general requirements can be identified.
The scheme must provide secrecy, authenticity and uniqueness of the established keys. In
this contribution we understand the requirement for authenticity in the following sense:
at the end of the execution of the scheme each participant knows that only the intended
other participant can be in the possession of the established secret key. The requirement
for uniqueness is generally taken to mean that the knowledge of some number of previously
established keys cannot be used to violate secrecy and authenticity of any further keys.
In other words, the key establishment scheme must resist known key attacks.

In this contribution authenticated one-pass key establishment schemes are considered.
In such a scheme the initiator computes a session key and a related message, the key
token, to be sent to the intended receiver using the receiver’s public key and the sender’s
secret key. From the received key token the receiver computes the session key, which is the
same as the one computed by the sender, using the sender’s public key and the receiver’s
secret key.

! To Rainer Rueppel, on the occasion of his 40th anniversary.




One-pass key establishment schemes are useful for applications where the communica-
tion is de facto non-interactive. This is the case if the session key is used for authentication
or encryption of a message which is either sent to the receiver for instant reception, like
in electronic mail applications, or put in a secure file accessible to intended recipients at
some later time.

In one-pass key establishment schemes particular precautions has to be taken to pre-
vent from replay of old keys and corresponding key-tokens. This fraud becomes possible
if only the sender is responsible for the refreshness of the keys. Since the receiver has no
means to create refreshness, the only possibility is to use some time-variant parameter,
which the sender cannot choose and whose validity can be verified by the receiver.

The first purpose of this contribution is to see what kind of possibilities there are to
integrate time-variance to some previously proposed one-pass schemes based on discrete
exponentiation. Secondly, we point out a weakness in a French one-pass scheme. There
does not seem to be any natural ways to repair it either by integrating time-variance or
by other means. Thirdly, we present a new time-variant one-pass key agreement scheme,
which offers certain advantages over the other schemes and is essentially different. While
the security of all other schemes discussed in this paper relies on the difficulty of solving a
single Diffie-Hellman problem, the breaking of even one instance of the new scheme gives
solution to this basic Diffie-Hellman problem.

2 Notation

‘The schemes discussed in this paper, with the exception of the French scheme, are defined
in the ordinary Diffie-Hellman setting. Let p be a prime, ¢ a divisorof p—1 and g € Z,
an element of multiplicative order ¢. Each user A of the scheme has a secret key z4 € Z,
and the corresponding public key of A is y4 = ¢4 mod p.

The security of most of the key establishment schemes in this setting is based on
the assumed difficulty of the basic Diffie-Hellman problem: given g, y4 and yp, find
yaB = g°4” mod p. We call y45 the Diffie-Hellman key of A and B.

3 The First Scheme

A simple key agreement scheme can be based on an one-way collision-resistant hash-
function h. Let y4p be the Diffie-Hellman key of two users A and B. The key-token of the
sender A contains just the user identifier of A and the valid value ¢ of the time-variant
parameter. Then parties A and B compute the key K45(t) = h(yap,t). The security of
this scheme relies on the difficulty of the basic Diffie-Hellman problem. In this sense, the
schemes to be discussed in Sections 4,5 and 7, are not any better.




4 The Agnew-Mullin-Vanstone Scheme

In [1] proposed an one-pass authenticated key agreement scheme, where the participants
compute the secret key from

Kap = yj4p mod p

where k is a seed generated randomly by the sender and sent to the receiver encrypted
using some public key encryption mechanism. As proposed in [1] it is natural to choose
the ElGamal encryption system [3] for this purpose. There are several ways to integrate
time-variance to this scheme. For example, if a hash-function is available, the sender
computes the hash-value of the concatenation of k and the current value of the time-
variant parameter and sends this hash-code along the encrypted %.

The security of this scheme also depends on the basic Diffie-Hellman problem. It is
clear that anybody who is in possession of y4p can impersonate A to B.

5 Integrating Time-Variance to the Nyberg- Ruep-
pel Scheme

The following modification of the one-pass key agreement scheme [8] is presented in [7].
The general setting is as described in Section 2. In addition the users have agreed on
a common hash-function k with values in Z,. Let the current value of the time-variant
parameter be t. Then the sender A

- ® generates two integers K and k in Z, randomly and secretly;
e computes r = g¥—* mod p;
e computes r' = h(r,t);
e computes s = k — z 47’ mod ¢;
e sends (r,s) to the receiver B;
e computes K p = y§ mod p.
The receiver B of the token (r,s)
e computes r’' = h(r, t);
e computes gX = ¢°y,'r mod p;

o computes K,p = (¢%)*® mod p.




Note that the key token (r,s) is a Nyberg-Rueppel signature of A of the message g
giving message recovery. From the expression of the key

Kap = y§y}5 mod p

we see that impersonation of A to B becomes possible with the solution y45 of the basic
Diffie-Hellman problem.

In the original time-invariant scheme [8] it was possible to replay an r corresponding
to a known key K, and by replacing the corresponding s by s + u to establish a new
key K' = Kyj mod p with the receiver. Note that this fraud is not applicable to the
corresponding two-pass scheme. A very similar known key attack can be launched against
a recently proposed identity based one-pass key agreement scheme we discuss next.

6 The French Scheme

This identity-based public key agreement scheme was proposed be the French national
body to the ISO/IEC SC27 [6]. Let n be a product of two primes, which are only known
to an authority who provides the public keys for the users. The public system parameters
constitute of n and two other integers e and g. Let A be a user of the system with identity

I4, an integer, and a secret key z4, also an integer. Then the authority computes the
public key of A

Y4 = 549”4 mod n,
where s4 is an integer such that
s§ = I7! mod n.
The proposed one-pass scheme is as follows. The sender A
® generates an integer k randomly and secretly;
e computes r = s4¢* mod n;
o sends r to the receiver B;
o computes the key K 5 = (y5I5)* = ¢°**5 mod n.

When receiving r from A the receiver B computes the key from Kyp = (rely)®e =
g°¥%2 mod n.

If an outsider C obtains a solution K4p of even one instance of this key agreement
between A and B, then C can impersonate A to B by sending ' = r¢“ mod n to B with
any u. Then C can compute the key computed by B from r’, since

((r")°14)°® = Kapg®™® = K 45(y315)"* mod n.

It remains an open problem whether this scheme can be repaired to become resistant
against this fraud, and against the replay attack specifically.




7 The Horster-Michels-Petersen Scheme

Recently Horster, Michels and Petersen presented in [5] a scheme, which they claim to be
an improvement of the authenticated encryption scheme of Nyberg and Rueppel [9], since
it requires lower communication costs. However, the Horster-Michels-Petersen scheme
cannot really be considered to provide authenticated encryption in the same sense as
the Nyberg-Rueppel scheme, since it may fail to offer the receiver B of the message any
means of proving the origin A of the message to a third party without revealing the
Diffie-Hellman key y4p, which will ruin the system.

But the Horster-Michels-Petersen scheme can be useful for applications which do not
provide non-repudiation, like for a secure transport of a symmetric session key. Also
it offers natural possibilities for integration of time-variance. The general setting is as
described in Section 2. In addition, the scheme employs an one-way function kA with
values in Z,.

Given a message m € Z,, with sufficient redundancy, the sender A

o generates k € Z, secretly and randomly;
e computes r = h(y%)~'m mod p;
e computes 7’ = r mod g;
e computes s = k — z,r’ mod p;
e sends (r,s) to the receiver B.
When receiving (r,s) from A the receiver B
e computes ' = r mod ¢;
| e recovers the message m = h(y%y7,“)r mod p.

When used for key transport, we propose to choose A to be a collision resistant hash
function, and hash the items concatenated with the current value of the time-variant
parameter.

Similarily, as for other schemes discussed above, we can see that the security of this
key transport scheme depends on the secrecy of the Diffie-Hellman key y45 as shown
in [5]. Anybody in possession of y4p can compute the redundant message (session key)
m = h(ysy AB)r mod p from the transmitted token (r,s). If the application, where the
session key is used, does not require the key to be chosen by A, which normally is the
case, then this scheme does not offer any improvement over the previous schemes.

The particular feature, that only the intended receiver is able to verify the origin of
the key token, can be developed further to design a new one-pass authenticated scheme
with many advantages over the previous schemes.




8 A New Scheme

Let the key agreement setting be as described in Section 2 and let us assume that the users
share a collision-resistant one-way hash function A with values in Z,. Then to establish a
session key with B, when the current value of the time-variant parameter is ¢, the sender

A
o generates k € Z, randomly and secretly;
e computes r = ¢* mod p;
e computes the key K4p = y& mod p;
o computes r’ = k(K p,1);
e computes s = k — 241’ mod ¢; and
e sends (r,s) to B.

When receiving (r,s) from A the receiver B
e computes the key K, 5 = r*2 mod p;
o computes r’ = k(K 4p,t) mod p; and
o verifies the equality r = gy, mod p.

This scheme has some advantages over the previously discussed schemes. First, only
one random number generation is needed. Secondly, the pair (K45, s) can be considered
as the signature of A for the message t using Schnorr’s signature scheme [10] with the
generator element yp. Hence the receiver B can explicitely verify the authenticity of the
key token. Thirdly, breaking one instance of the scheme, that is, obtaining knowledge
of one K4p and the corresponding key-token (r,s) gives the solution y,p of the basic
Diffie-Hellman problem from the equation

Kz = ypy4s " mod p.

On the other hand, it seems that the knowledge of y4p is not sufficient to compute K p
from (r,s). Impersonation of A in this scheme is not possible even to B, who can, by
revealing K 45, prove to any third party, first that Kyp = r*2 mod p, and then that A
has created the key token (r,s). Hence the security of this one-pass scheme is based on
the underlying signature scheme.

Note that Schnorr’s signatures can be replaced by other digital signatures that are
defined in the setting of Section 2. For example, this scheme could be based on the DSS

[4].
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Abstract

Diffie-Hellman-type key exchange protocols require modular exponentiation oper-
ations, which are time-consuming to be performed on a weak power device such as a
smart card. In this paper, we consider the problem of accelerating smart card compu-
tation of shared secrets. We first propose and analyze two protocols for authenticated
key exchange (two-pass and three-pass protocols) and then present their server-aided
versions. The proposed server-aided key exchange(SAKE) protocols only require a
small amount of additional communication but substantially reduce the smart card’s
computational load. For example, in one of the proposed methods, the smart card
can compute a shared secret in about 50 multiplications on average while achieving
the cryptanalytic complexity of more than 2% operations. This performance may be
further improved by increasing the communication complexity.

1 Introduction

One of the elementary prerequisites for secure communications is to establish a shared secret
between two communicating partners. Such a shared secret key can be used to provide
secrecy or integrity of a transmitted message by enciphering the message or generating
MAC (message authentication code) with symmetric cryptosystems such as DES.

Secure key exchange needs authentication of communicating partners to prevent imper-
sonation. Key exchange protocols with implicit authentication may fail under some sophis-
ticated attacking scenarios (e.g., see [1]). Thus it would be preferable to provide explicit
authentication, whenever possible, at the cost of some more computation and communica-
tion. It is quite easy to achieve authenticated key exchange with a slight modification of
authentication protocols. By the end of a successful run of such protocols, two involved
communicants will end up in possession of a shared secret.

Another threat to key exchange protocols may result from disclosed session keys [2,3].
Lost or leaked session keys may be exploited to compute a session key in a future session
simply by observing the conversation or by impersonating a legitimate party [2,4,5]. Thus
session keys should not be related to each other so that possession of old session keys
does not make it any easier to compute another session key. In practical implementations,
this kind of attack can be prevented in most cases by computing a session key as one-way
function of the shared secret (e.g., as a hash-value of the shared secret), but still necessitates
special precautions under some circumstances.
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Once security is assured, it is the next objective in designing a key exchange protocol to
enhance its efficiency as possible as one can. However, most key exchange protocols based
on the discrete logarithm problem require at least one modular exponentiation, which is
time-consuming to be performed on a weak power device such as a smart card. This
motivated us to devise a method for accelerating the key exchange procedure on smart
cards. Since the smart card only communicates with the outside world through a powerful
terminal (such as PC or workstation), it may perform the required secret computation by
borrowing the computing power of the (untrusted) powerful terminal without revealing its
secret information.

This kind of client-server based computation model, called the server-aided secret com-
putation, has been studied by many researchers in recent years, mainly focused on the RSA
signature generation [6-11]. On the other hand, the present authors recently have developed
efficient protocols for smart card verification of identity proofs and signatures with the aid
of the prover/signer [12]. Compared to the server-aided secret computation protocol, the
developed sever-aided public verification protocol requires much less communication and
thus more practical for smart card implementations.

In this paper we consider another important, yet untouched application area of server-
aided secret computation, i.e. the problem of speeding up secret key establishment on a
smart card with the aid of a powerful terminal. Two protocols are proposed for Diffie-
Hellman-based authenticated key exchange and server-aided versions of these protocols are
then presented. It doesn’t matter with which the smart card tries to agree a secret key.
The communicating partner may also be another smart card. Then each smart card can
interact with its own terminal only during the server-aided computation.

The rest of this paper is organized as follows. Section 2 introduces some conventions
used in this paper and describes some exponentiation algorithms for evaluating multiple
exponential terms. Section 3 describes two protocols for authenticated key exchange, one
with two moves and the other with three moves. In Section 4 we present server-aided
versions of the proposed key exchange protocols. Finally we conclude in Section 5.

2 Preliminaries

All the protocols presented in this paper will be illustrated using Schnorr’s scheme [13],
but they can be constructed with any signature scheme based on the discrete logarithm
problem. Throughout this paper, we will use the following conventions.

Let p and g be two large public primes such that ¢ divides p—1 and g be an element of
order gin Z,. We denote the bit-length of p (g, resp.) by m (n, resp.) (i.e., |p| = m,|g| = n).
The reference size of m and n for our illustration will be taken as 512 and 160 respectively,
as in the digital signature standard (DSS) [14]. Let (s4,v4) be the secret and public key
pair of user A, where v4 = ¢g7°4 mod p with s4 € Z,. We assume that precomputation of
random powers to the fixed base g is performed in advance and thus does not take time
during the protocol execution. Multiplication will always denote multiplication mod p and
multiplication mod ¢ will be neglected when counting the number of multiplications.

We next briefly describe methods for evaluating w = [IY, g7 mod p with |z;| = ¢, which
will be needed for the performance analysis of the proposed SAKE protocols. Here we
assume that the most significant bit of an exponent is always one for completeness, though
their effect on the performance is negligible. For N = 2, one can compute w = ¢§*g3*> mod p
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using the binary method, known as the square-and-multiply algorithm, where a frequently
used value g;g, mod p is first computed and stored for later use. With this method, w can
be computed in 1.75¢ — 0.75 multiplications on average (2¢ — 1 in the worst case). Similarly,
one can compute w = g;'g;2g3° mod p in about 1.875¢ + 2.125 multiplications on average
(2t + 2 in the worst case) using four precomputed values (all possible combinations of g;’s).

As the number of exponential terms increases, this method becomes inefficient in both
computation time and storage usage. For large values of N, there exists a more efficient
way to evaluate w. For this, we arrange the N exponential terms into groups consisting of
almost equal terms, prepare products of all possible combinations of base elements in each
group and then apply the square-and-multiply algorithm [15]. As an example, we explain
this method for N = 5. That is, we want to compute

5
w =[] ¢ = (65°95*95°) - (95°9F*) mod p.
=]
Let (zit - - - Zi2Ti1 )2 be the binary representation of z; where z;; € {0,1}. We first compute
and store the following values

G[U[I] = g gitg? mod p, G[0][J] = gi2gi* mod p,

where I = (isiqt3)2 and J = (ia2;)2 with ¢; € {0,1}. This precomputation requires 5
multiplications. Using this precomputed table, we execute the following algorithm.

w := G[1}[7]G[0][3] mod p;
fori:= t-1 to 1 step -1
w := w? mod p;
I := (z5iz4iT3i)2; J = (T2i%1:)2;
w = wG[1][I]G[0][J] mod p;
return(w);

The above algorithm can computes w in 2.625(f+1) multiplications on average, including
the number of multiplications required for precomputation. It also requires a temporary
storage for 10 precomputed values. The performance of the proposed server-aided protocols
will be evaluated based on the described exponentiation methods.

3 Protocols for Authenticated Key Exchange

3.1 One/Two-pass protocol

Let h be a one-way hash function producing I-bit digests and f be a permutation on a set
of I-bit numbers. The parameter ! determines the security level of the protocol. Suppose
that users A and B want to establish an authenticated session key. Then the two users
conduct the following protocol.

1) User A randomly picks R4 and r4 in Z, and computes K4 = vgf’ mod p, 4 =
g™ mod p,es = h(Ks®x4,T4) and ys =r4 — Ra+ sge4 mod g, where @ denotes
bitwise exclusive-or and T4 a timestamp. Then A sends {x4,e4,y4,74} to user B.
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2) User B first checks the timeliness of T4 with respect to local clock. Then B computes
Kp = (g*4vj*14)*® mod p and checks that e4 = h(Kp @ z4,T4). If the check is
successful, B computes eg = h(Kp, f(T4)) and sends it back to A.

3) User A checks that eg = h(Kg4, f(T4)).

At the end of successful completion, A and B will obtain the authenticated secret key,
Kyp = K4 = Kp, from which a session key can be derived for use in a subsequent secure
communication. For example, the session key can be computed as K 45 mod ¢. For one-way
communications, step 3) can be omitted. Then authentication of A to B becomes implicit.
The protocol is quite efficient. A (B, resp.) only needs to perform about 1.5(n — 1)
(1.875n + 2.125, resp.) multiplications on average and the number of communication bits
is m + n + 3! (excluding public key related information).

The hash function h may be replaced by other simpler functions. An example is to
compute e4 as K1 @ 241+ K42 ® T4, where K4; denotes the i-th I-bit block of K4, and eg
as ep = Kps ® T4 + Kps. In this case, the timestamp T4 needs not be transmitted since it
can be recovered from e4. Note also that e4 and eg release almost no information on the
secret K p. :

The above protocol is designed so that it can resist any conceivable attack. The replay
attack can be detected by the use of timestamp. It also resists known-key attacks due
to the use of two distinct random numbers for authentication and key exchange(see [5)).
Explicit authentication will prevent any impersonation attack. The most promising way
to impersonate user A would be to find a pair {e4,ya} satisfying e4 = h(v%T™* mod p @
v3°4g™4 mod p,T,) for random r4 and some T4 containing future time information. This
requires about 2! operations and can be made infeasible, for example, by taking | = 64.
Note that if K4 is not involved in the computation of e4, then an imposter may pass the
check of step 2) though he cannot compute the shared secret.

To the authors’ opinion, it seems unlikely that the whole secret key K p would be
disclosed in most applications, since the session key is usually much less than the modulus
size and thus it can be obtained by applying some one-way functions (e.g., one-way hash
functions) or it can be simply computed as K4p mod g (of course, more care should be
taken under some circumstances such as negotiation of contracts, see [1,3]). If this is the
case, the above protocol can be further simplified as follows.

1) User A randomly picks 74 in Z, and computes K4 = vz mod p, es = h(K4,Ty)
and y4 =14 + sseq mod ¢g. Then A-sends {es,ya,Ta} to user B.

2) After verifying the timeliness of T4, user B computes Kg = (g¥4v%*)°® mod p and
checks that eq = h(Kp,T4). If the check succeeds, B computes eg = h(Kg, f(T4))
and sends it back to A.

3) User A checks that eg = h(Ka, f(T4))-

This variant achieves somewhat better efficiency in computation and communication,
and particularly has additional advantage in view of security. To impersonate user A, an
attacker has to find {e4,y4, T4} such that e4 = h((g¥4v%*)*® mod p,T4). However, solving
this equation is impossible, irrespective of the size of e4, as far as the discrete logarithm
problem is intractable. Thus the size of ¢4 and ep may be further reduced (say, of 40 bits).
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3.2 Three-pass protocol

We now present a three-pass variant of the protocol described above. In this protocol, the
Schnorr identification scheme is applied to user A while user B still employs the signature
variant. Consequently, the use of timestamp is unnecessary. In general, using nonces
(random numbers) is regarded as a better way to assure freshness of conversations and thus
the resulting protocol will be more robust against replay attacks (see [16-18] for various
ways for freshness assurance and their comparison). Note that K4; denotes the :-th I-bit
block of K 4.

1) User A randomly picks R4 and r,4 in Z, and computes 4 = g*4 mod p and e4 =
(¢™* mod p) mod 2L, Then A sends {z4,e4} to user B.

2) User B randomly picks rg in Z, and computes Kg = z'f mod p, eg = Kp, ® Kp;
and yp = rg + spep mod ¢. Then B sends {yp,ep} to user A.

3) User A computes K4 = (g¥®v3? )™ mod p and checks that ep = K41 @ K4o. If the
check succeeds, A computes y4 = r4 + saep mod g and sends it back to user B.

4) User B checks that e, = (g¥4vf mod p) mod 2F.

The soundness of Schnorr’s identification scheme guarantees that an attacker cannot
succeed in impersonating user A with probability better than by guessing ep jointly deter-
mined by A and B. It will suffice to take ! around 40. Small values of L may reduce the
security level as noted in {19}, but L = 128 would be sufficient. As mentioned before, mas-
querading as user B is impossible unless the discrete logarithm problem is easy. The above
protocol also uses two distinct random numbers for authentication and secret key exchange
to avoid the known-key attack. As before, after successful completion of the protocol, both
users can compute a session key as K p mod ¢ where Kyp = K4 = Kp.

4 Server-Aided Computation of Shared Secrets

This section deals with a method for speeding up the smart card computation of shared
secrets in the key exchange protocols described before. Let user A be the smart card and
user B be any party with which the smart card wants to share a secret session key. For the
sake of convenience, let us call the two-pass protocol as 2PP and the three-pass protocol
as 3PP. The smart card has to compute

K, = vf* mod pin 2PP and
Ks = (¢*®v®)F4 mod p in 3PP.

Direct computation with the square-and-multiply algorithm requires about 238.5 multipli-
cations in 2PP and 279.25 multiplications in 3PP, on average (for n = |g| = 160). These
amounts of computation are clearly too much for smart cards under current technology.
However, since the smart card only communicates with the outside world through a
powerful terminal, it can borrow the computing power of the terminal to reduce the re-
quired number of multiplications. This will of course somewhat increase the communication
complexity. As is clear from the above key computation equations, such a server-aided key
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exchange(SAKE) protocol requires somewhat different approach from that for RSA com-
putation. That is, in addition to protecting the involved secret R4, the SAKE protocol
also has to resist the impersonation attack which can be mounted during the server-aided
protocol. This is a major difference from the server-aided RSA computation protocol.

4.1 Basic SAKE Protocols

Let us first consider the server-aided computation of K4 = v54 mod p in 2PP. Before
begining communication with user B, the smart card (user A) conducts the following
protocol with the server.

SAKE Protocol for 2PP

1) The smart card randomly picks k; € [0,2%) (0 < i < N)and u; € Z, (1 <7 < N)
such that ~ ‘
RA — kg = Z kiui mod q. (1)
=1

Then the smart card sends {u;} to the server.

2) The server computes w; = vg mod p for each ¢ and sends {w;} back to the smart
card.

3) The smart card then computes K4 as

N
Ky=v Hw,’-"' mod p. (2)

=1

We first examine two security aspects of the above protocol, the probability of im-
personation and the attacking complexity for finding the secret R4, and then analyze its
performance.

On-line Attack for Impersonation : Suppose that the server tries to impersonate user
B by manipulating its transmissions. As can be seen from (2), this is possible only if it
could replace vg with any value whose logarithm it knows, say 8 = ¢g7s mod p with random
Rs € Z,. The only way to achieve this is to guess ko and one other k; for some ¢ (say,
¢ = 1) and then return w;’s such that w; = Btk ' k°v§k1 ko mod p and w; = 8% mod p for
i=2,...,N. Then the server will be able to share the session key K4 = (g74)s mod p
with the smart card since it can compute g©4 as g¥4v52z 4 mod p. However, this attack can
be successful only with probability 272*. Practically, a guessing probability of 10~° (i.e.,
t = 15) would be sufficient in most applications.

Off-line Attack for Finding R, : The server (any eavesdropper, indeed) may try to find
R, itself from (1). Equation (1) can be rearranged as

N/2

N
RA - ko — Z k,-u,- = Z k,-u,- mod q, (3)
=1 =N/2+1
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where “/” denotes integer division. Then one can obtain, by raising g to each side of (3),
the equation

N/2 N
Ra -g_k° . H wf‘ = H wf" mod gq, 4)
i=1 i=N/24+1

Now the server can exhaustively search for k;’s based on (4) and then compute R4 from
(3). That is, the server enumerates both sides of (4) for all possible values of k; € [0,2¢) and
searches for a common value. The enumeration requires about K = 2(1+V/2)t myltiplications
and sorting and merging the enumerated sets requires about K log, K comparisons and the
storage of order K.

Suppose that we want to achieve K > 2%, which results in the actual computational
complexity of about 2% operations. Then we have to choose the parameter ¢ such that
(14 N/2)t > 60 for given N. It will be preferable to choose N even, as can be seen from
(4). For example, we get t = 60,30, 20 for N = 1,2, 4 respectively. Note that knowledge of
R, only disclose the secret K4 of that session but does not affect the secret key s4 of user
A. This is also true for 3PP.

Performance : Now let us consider the performance of the basic SAKE protocol. First
note that N cannot be taken large for practicality since the smart card has to evaluate
N +1 small powers. We only consider three values of N,ie. N = 1,2, and 4. To compute
the shared secret K4 using (2), we directly apply the square-and-multiply algorithm for
N =1and N = 2. For N = 4, we use the method in [15] where the five exponential terms
are divided into two groups consisting of two and three exponential terms and then the
square-and-multiply algorithm is applied (see section 2).

The following table summarizes the performance of the protocol. The number of mul-
tiplications required of the smart card is evaluated for the average case only. The storage
column only shows the number of n-bit storage for temporarily storing the precomputed
values required for exponentiation. The figures in the rightmost two columns are computed
for a security level of 2°°. Finally, note that we are using m and n as the bit-lengths of p
and g respectively.

N Mul Storage | Commun || ¢ Mul

1 1.75t — 0.75 3 m+n 60 | 104.25
2 || 1.875¢+2125| 7 [2(m+n)| 30 | 58.38
4 | 2.625(t+1) 10 |4m+n)| 20 | 55.13

Table 1. Performance of the basic SAKE protocol for 2PP

(From this table, we can see that if the smart card has a scratch-pad memory (RAM)
for about ten values of m bits (N = 2), it can compute the shared secret K, in less
than 60 multiplications on average. This gives about a four-fold improvement over direct
computation by the binary method only using a small amount of communication. The next
section will describe enhanced SAKE protocols giving better performance.

Next, we consider the server-aided computation of K4 = (g¥8vz?)%4 mod p in 3PP. The
only difference from the SAKE protocol for 2PP is that the term g¥2%4 mod p needs to be
computed in addition. We can compute this power almost for free using precomputation.
The smart card executes the following protocol with the server after step 2) in 3PP.

15




SAKE Protocol for 3PP

0) The smart card randomly picks K € Z,, computes z = gX mod p and securely stores

the pair {K, z}.
1) The smart card randomly picks k; € [0,2!) (0 < i< N)and w; €Z, (1 <i < N+1)
such that
N
Ry—ko = Zk,'u; mod g, (5)
=1
uny1 = ypRs— K mod gq. (6)

Then the smart card sends {u;} to the server.

2) The server computes w; = v mod p (1 <¢ < N) and wy4; = ¢g*¥+ mod p and then
sends {w;} back to the smart card.

3) The smart card then computes K4 as

N
Ky = szva" H wf‘ mod p. M

i=1

Since step 0) can be carried out ahead of time, the smart card can compute K4 as in the
SAKE protocol for 2PP, only by increasing two multiplications due to wy4; and z. Note
that uy,; provides no additional information on R4 due to the involvement of another
random number K. As for security, we have to mention one more point. For the server to
impersonate user B by the real-time attack explained before, it is now sufficient to guess
ko only, since wy4; is not raised to random power. Thus the success probability for the
attack becomes 2~? rather than 27%. This should be kept in mind when determining the
size of ¢.

With some increase of computational amount, one can achieve the same imposter pass
rate as before. For this, the smart card randomly selects kyi; € [0,2!) additionally and
computes un41 as un41 = (ysRa — K)kyy; mod g. Then K4 can be computed as

N+1
K4 = z0% II w’ mod p. (8)

=1

Thus the number of small powers to be evaluated is increased by one. This will somewhat
degrade the performance. Note, however, that we need not to take this alternative for the
basic SAKE protocol with NV = 2, which seems most suitable for smart cards in computation
time and storage usage, since we already have ¢ = 30 for this case.

4.2 Improved SAKE Protocols

We can further reduce the number of multiplications required of the smart card in the basic
SAKE protocols by using more communication. We only consider variants of the SAKE
protocol for 2PP. The following is a generalized SAKE protocol for 2PP.
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1) The smart card randomly picks k; € [0,2°) (0 <: < N)and u; € Z, (1 < j < M)
such that
N M
Ry—Fko= ki (E fz‘j"j) mod g, (9)
=1 7=1
where f;; = YF, fin2? with fi; € {0,1}, L-bit secret integers. Then the smart
card sends {u;} to the server.

2) The server computes w; = vg mod p for each j and sends {w;} back to the smart
card.

3) The smart card then computes K, as

N (M \F
Ki=v%T] Hw;f" mod p. (10)

i=1 \j=1

The only difference from the basic SAKE protocol is a further decomposition of u;’s.
This somewhat increases the communication complexity, but, as will be seen below, consid-
erably reduces the computation time. All three parameters M, N and L are closely related
to the performance of the protocol (i.e., the number of multiplications, communication bits
and storage required of the smart card). For performance reason, we will choose L-bit
numbers f;; sparse. That is, the total weight of NM L binary numbers f;;;’s will be limited
to a certain value W. We only consider two values of N, N = 1 and N = 2, since larger
values of N result in smaller ¢’s and thus increase the success probability of impersonation.

Computing K, : Equation (10) can be rewritten as

gl—1y ki

Nz (Mo
Ka=v2TI{11 (H wj"') mod p. (11)

i=1 |i=1 \j=1

Using this expression, we can compute K4 as follows. The smart card first accumulates
Zi = Hﬁ.‘_{__l wf‘j' mod p for each ¢ and I. This accumulation requires approximately W — NL

multiplications. Next it computes z; = [[~, 22" mod p for each 7, which requires at most
2N(L — 1) multiplications. The total number of multiplications required to compute all
z’s can be shown to be at most W + N(L — 2). Now K is computed as K4 = v [, 25

mod p. Therefore, the total expected number of multiplications required of the smart card
is at most

1.75t + W+ L —2.75 for N =1 and (12)
1.875t + W + 2L — 1.875 for N = 2. (13)

Parameter Selection : To determine appropriate values of M, L, W and ¢ for a given N,
we solve the following minimization problem.

¢ Conditions :

— Either M or W must be chosen small, say less than 10, considering the space
limitation of typical smart cards.
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— The probability of successful impersonation must be smaller than 10~°. For this,
we simply choose ¢ greater than or equal to 15.

— The complexity for finding R4 must be greater than 2%° operations. For this
2 >

we simply require the number of possible values to be sorted to be greater than
20,

e Objective :

— Minimize the required number of multiplications given in (12) and (13).

As for the first condition, we would like to mention the following note [11]. During
the accumulation of z; = Hjl‘il w;"’" mod p for each ¢ and [, the server may monitor the
duration of the smart card’s computation in order to deduce the weights of f;;;’s. Thus,
to avoid this kind of implementation-dependent attack, the smart card must either spend
the same amount of time on each step or take other measures. We consider two methods
of restricting parameter selection to get better performance. The smart card may compute
zi’s after receiving all w;’s at a time. This requires M to be chosen small. Alternatively,
the smart card may store w;’s with non-zero f;;;’s and then compute z;’s. This requires
W to be chosen small. These are the reason why we take either M or W small.

Analyzing Performance : To estimate the attacking complexity for the case of N =1,
we have to consider (9) by rewriting it as

M, M
Ry—ko—k Zfljuj =k Z fiju; mod g, (14)
j=0 =M 41

where M; is a number less than M/2. Then, to achieve the required security level of 2%°
operations, we can easily see that given M, L, W and t > 15, the following inequality must
be satisfied for all M; < M/2.

S (e o

7=1 k=0

For N = 2, we rewrite (9) as Ry — ko — ky Z]-le fiiu; = ke EjM=1 f25u; mod g and obtain
the following inequality to be satisfied.

L { (V) ()L 0

=2 k=1 J

Now, our objective is to minimize the required number of multiplications given in (12)
and (13) under the constraints (15) and (16). Table 2 summarizes some selected parameters
for small M’s. As can be seen from (12) and (13), there may exist many pairs of (W, L)
giving the same performance. We have chosen the smallest L among such pairs. Note that
the number of communication bits is determined by M and is given by M(m + n). From
this table we can see that with a small increase of communication the required number
of multiplications can be substantially reduced compared to the basic SAKE protocol,
especially for the case of N = 1.
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N=1 N=2
MIL{W|t|Md | L{W|t| Md
5 (|14 15155250 || 713 | 15| 53.25
6 (|14 )13 (16 |52.25 || 6 | 11 | 16 | 51.12
7 (112114 |15 (49.50 || 5|11 | 16 | 49.12
8 [[10 |15 15 |48.50 || 5 | 11 | 15 | 47.25
9 |11 112 [15146.50 | 510 | 15 | 46.25

Table 2. Selected parameters I for the improved SAKE protocol

If the communication cost is much lower than the computation cost, we may further
increase M to get better performance. For example, Table 3 shows some selected parameters
for M = 30. In this case, we have chosen W small and thus the smart card can receive and
store all w;’s with non-zero f;;;’s at a time and then perform the required computation.

N=1 N=2
WL |t ]| Mua|L|t| Mud
5 || 131245725 3|20 ]| 46.62
6 |14 18 |48.75 | 2 |19 | 43.75
7 112154250 | 3 |16 | 41.12
8 8 115139.50 || 2 {16 | 40.12
9 6 |15({38.50 | 2|15 39.25

Common : M = 30

Table 3. Selected parameters II for the improved SAKE protocol

Reducing the Server’s Computational Load : We finally consider the number of
multiplications required of the server and suggest a means of reducing the server’s load.
The server has to perform M exponentiations of n-bit exponents. This will require about
an average of (1.75n — 0.75)M (279.25M for n = 160) multiplications with the binary
algorithm. However, since these exponentiations are based on the fixed number vg, we can
apply the precomputation techniques [15,20,21] to reduce the number of multiplications.
For example, with one of the methods from [15], this computation can be completed in
at most 41M + 228 multiplications for n = 160, where 228 accounts for the number of
multiplications needed to prepare the precomputation table. Even for M = 10, this gives
better than a four-fold speedup.

On the other hand, we can further reduce the server’s computational load by using u;’s
with a special structure. Note first that u;’s need not be chosen at random. It is sufficient
for the weighted numbers f;;u;’s to be distinct. Thus we may choose u;’s as u; = 20~DE
for j = 1,---,M — 1 and compute the final value ups from (9). In this case we have to
increase M by one since the last value must always have non-zero weight. For example,
applying this method for N = 2, equation (9) can be expressed as

Ry—ky = kl(fll + f122L R fle(M—l)L)

+ ko(fa + Far2l 4o 4 fop 2D 4 UM41)- ' (17)
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{From this equation, uas4; can be computed and transmitted to the server.

Now the server can compute w;’s as w; = v} mod p, w; = wffl mod p for j =
3,-++,M — 1 and wpy = vg" mod p. Note that w; = vg. All these computations require
(L —1)M + 1.75n — 0.75 multiplications on average. For the parameters given in Table 3,
L takes at most 14 and even for this worst case the server only needs to perform 669.25
multiplications on average.

5 Conclusion

We can expect that smart cards will be rapidly prevalent in the near future as pocket
computers for performing secret cryptographic operations, due to its high security and
portability. Smart card systems provide good computing resources easily accessable to a
weak power smart card, since the smart card only communicates with the outside world
through the powerful terminal. Diffie-Hellman-type key exchange protocols require modular
exponentiation operations, which take a considerable time on typical smart cards. In this
paper we have proposed two protocols for Diffie-Hellman-based authenticated key exchange
and then presented their server-aided versions. The proposed server-aided protocols were
shown to substantially speed up the smart card computation of shared secrets only with a
small increase of communication. We believe that our protocols will be useful for practical
implementations of most key exchange protocols on smart cards.
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Abstract

There are a number of key agreement protocols in the literature and in use in practice
which purport to give mutual implicit authentication. Examples include the Nyberg-Rueppel
one-pass protocol [8], and the Matsumoto-Takashima-Imai (MTI) [5], Goss [4] and Yacobi
[10] two-pass protocols for key agreement. In this paper we describe new attacks on these
systems which demonstrate that implicit authentication is in fact not obtained. In some
cases we show how the protocols can be extended to provide the desired property. We also
present three new protocols which are very efficient and give mutual implicit authentication;
the first two have two passes, while the third is a one-pass protocol.

1 Introduction

Key establishment is the process by which two (or more) parties establish a shared secret key,
called the session key. The session key is subsequently used to achieve some cryptographic goal,
such as privacy. A key establishment protocol is said to provide implicit key authentication (or
simply key authentication) if one party is assured that no other party aside from a specially
identified second party may learn the value of the session key. Note that the property of implicit
key authentication does not necessarily mean that the first party is assured of the second party
actually possessing the session key. A key establishment protocol is said to provide key confir-
mation if one party is assured that a specially identified second party actually has possession
of a particular session key. If the implicit key authentication or key confirmation is provided to

*The first author is a consultant to MOBIUS Encryption Technologies.
tThe third author holds the MOBIUS Chair of Cryptography at St. Jerome’s College, University of Waterloo.
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both parties involved in the protocol, then the authentication is said to be mutual; if provided
to only one party, the authentication is unilateral. The number of passes in a protocol is the
number of messages exchanged between the two parties. Broadly speaking, there are two kinds
of key establishment protocols: key transfer protocols in which a key is created by one party
and securely transmitted to the second party, and key agreement protocols in which both parties
contribute information which jointly establish the shared secret key.

In this paper, we shall only consider key agreement protocols for the asymmetric (public-
key) two-party setting. For further discussions on the properties of key agreement protocols, the
reader is referred to the survey article by Rueppel and van Oorschot [9] and Chapter 12 of [6].

There are various schemes in the literature which claim to provide implicit key authentication.
The purpose of this paper is fourfold:

e To describe new attacks on some implicit key agreement protocols. The first kind of attack
is general and applies to many systems. In all the attacks an active adversary E modifies
messages exchanged between parties A and B, the result being that B believes he shares
a key K with F while A believes she shares the same key K with B; E does not learn the
value of K.

A practical scenario where the attack may be launched successfully is the following (this
attack was first described by Diffie, van Oorschot and Wiener [3]). Suppose that B is a
bank branch and A is an account holder. Certificates are issued by the bank headquarters
and within the certificate is the account information of the holder. Suppose that the
protocol for electronic deposit of funds is to exchange a key with a bank branch via a
mutually authenticated key agreement. Once B has authenticated the transmitting entity,
encrypted funds are deposited to the account number in the certificate. Suppose that
no further authentication is done in the encrypted deposit message (which might be the
case to save bandwidth). If the attack mentioned above is successfully launched then the
deposit will be made to E’s account instead of A’s account.

e To present modifications of some of these protocols in order to achieve the properties that
were desired.

e To present two new two-pass key agreement protocols (Protocol 1 and Protocol 2) which
provide mutual implicit key authentication, have low communication and computation
overhead, and are non-interactive (the message transmitted between the two parties are
independent of each other). Other features of the new protocols are that they are role-
symmetric (the 2 messages transmitted between parties have the same structure), and do
not require encryption, hash functions, or timestamping.

e To present a new one-pass key agreement protocol (Protocol 3) which provides mutual
implicit key authentication, has low communication and computation overhead, and does
not require encryption, hash functions, or timestamping.

The remainder of the paper is organized as follows. Section 2 describes four variants of
the Matsumoto-Takashima-Imai (MTI) key agreement protocols, the new attacks on them, and
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modifications which resist the attack. Section 3 describes the Nyberg-Rueppel one-pass key
agreement protocol, and the new attack on it. The new two-pass key agreement protocols are
presented in Section 4, while the new one-pass key agreement protocol is presented in Section 5.
Section 6 is a general note about a particular problem of replay in one-pass key establishment
protocols. Finally, Section 7 makes some concluding remarks.

2 The MTI key agreement protocols

The three protocols described in this section are special cases of the 3 infinite families of key
agreement protocols invented by Matsumoto, Takashima and Imai [5]. In particular, protocols
MTI/A0, MTI/B0 and MTI/CO correspond to protocols A(0), B(0), and C(0), respectively, of
the original paper [5]. The MTI protocols are variants of the Diffie-Hellman key exchange [2]
whose purpose is for parties A and B to establish a secret session key K.

The system parameters for these protocols are a prime number p and a generator « of the
multiplicative group Z,; these parameters are fixed and known to all users. Party A has private
key a and public key p4 = o® mod p. Party B has private key b and public key pg = a® mod p.
(In order to simplify the notation, the modulus p will be omitted for the rest of the paper. Also, it
is understood that if any protocol or attack uses the quantity a=! mod (p — 1), 57! mod (p — 1)
or e~ mod (p — 1), then a, b or e were chosen subject to the additional constraint of being
relatively prime to p — 1.) In all three protocols below, text, refers to a string of information
that identifies party A. If the other party B a priori possesses an authentic copy of A’s public
key, then text4 merely consists of A’s identity, such as her name. Otherwise, text4 will contain
A’s public-key certificate, issued by a trusted center; B can use his authentic copy of the trusted
center’s public key to verify A’s certificate, hence obtaining an authentic copy of A’s public key.

We describe a new attack on the MTI protocols which demonstrate that they do not provide
implicit key authentication. In each attack, a third party F wishes to have messages sent from
A to B identified as having originated from E herself. To accomplish this, E selects a random
integer €, 1 < e < p — 2, computes pg = (pa)® = ¢, and gets this certified as her public key.
Notice that E does not know the exponent ae (assuming, of course, that the discrete logarithm
problem in Z; is intractable), although she knows e.

We then present modifications to each of the 3 protocols which foil this new attack thereby
achieving the desired property of mutual implicit authentication. In the modified protocols
F(X,Y) denotes a cryptographic hash function, such as the NIST Secure Hash Algorithm [7],
applied to the string obtained by concatenating X and Y.

2.1 MTI/AO protocol
The protocol

1. A generates a random integer z, 1 < z < p — 2, computes ¢o*, and sends {o”, texts} to
party B.
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2. B generates a random integer y, 1 < y < p — 2, computes a?, and sends {a¥,textg} to
party A.

3. A computes K = (a¥)%(pB)* = at¥the

4. B computes K = (0%)b(pa)¥ = a®¥+b=,

The new attack
1. F intercepts A’s message {o”, text4} and replaces it with {o”, textg}.
2. B sends {a¥,textg} to E, who then forwards {(o¥)®, textg} to A.
3. A computes K = (af¥)%(pg)® = a®¥+b=,

4. B computes K = (o%)%(pg)¥ = a®¥+b=.

A and B now share the key K even though B believes he shares a key with E; E does not learn
the value of K.
The modified protocol

1. A generates a random integer z, 1 < z < p — 2, computes o, and sends {o”,texts} to
party B.

2. B generates a random integer y, 1 < y < p—2, and computes o?, K = (a®)%(pa)? = a®¥+b=,
and h = F(a?,a®¥t%%). B sends {o¥, h, textg} to party A.

3. A computes K = (a¥)%(pg)® = a®¥*%%. A also computes k' = F(o¥, K) and verifies that
this quantity is equal to h. (If h # A’ then the protocol terminates with failure.)
2.2 MTI/BO protocol
The protocol

p — 2, computes (pg)® = &', and sends’

IA

1. A generates a random integer z, 1 < z
{a”® text,} to party B.

2. B generates a random integer y, 1 < y
{a®¥, textg} to party A.

IA

p — 2, computes (p4)?Y = o, and sends

3. A computes K = (a®)* o = o®t¥,

4. B computes K = (a?*) 7 o¥ = o=tv.
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The new attack
1. E replaces A’s message {a%, text,} with {a%*, textg}.

2. Bsends {(pg)?, textg} to E, who then computes ((pg)¥)” = 0¥ and forwards {a®, textg}
to A.

3. A computes K = (a®¥)* ' of = oY,
4. B computes K = (o)t a¥ = oV,

A and B now share the key K even though B believes he shares a key with F; F does not learn
the value of K. :

The modified protocol

1. A generates a random integer z, 1 < z bz

{a?*, texty} to party B.

IA

P — 2, computes (pg)* = ¢°%, and sends

2. B generates a random integer y, 1 < y < p — 2, and computes (p4)¥ = o%, K =
(a*)? " 0¥ = 0®+Y, and h = F(0™¥,0"*Y). B sends {o®, h, textp} to A.

3. A computes K = (a®)* o = a**¥. A also computes b’ = F(0®¥, K) and verifies that
this quantity is equal to k. (If h # k' then the protocol terminates with failure.)
2.3 MTI/CO protocol
The protocol

1. A generates a random integer z, 1 < z < p — 2, computes (pg)° = o, and sends

{a?®,text,} to party B.

IA

2. B generates a random integer y, 1 < y < p — 2, computes (p4g)? = %, and sends
{a", textg} to party A.
3. A computes K = (a®)*™'% = oY,

4. B computes K = (a®)}7'¥ = o,

The new attack
1. E replaces A’s message {o®%, texts} with {a??, textg}.

2. Bsends {(pg)?, textg} to E, who then computes ((pg)¥)¢” = a®¥ and forwards {a®, textg}
to A.

3. A computes K = (a®)*7'¢ = Y.
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4. B computes K = (a*)?7'¥ = o®v.

A and B now share the key K even though B believes he shares a key with E; F does not learn
the value of K.

The modified protocol

1. A generates a random integer z, 1 < z < p — 2, computes (pg)® = ob*, and sends
{a%*, texta} to party B.

2. B generates a random integer y, 1 <'y < p—2, and computes (p4)?Y = a®¥, K = (ab")b—ly =
o®¥, and h = F(a®,0™). B sends {a®, h, textg} to party A.

3. A computes K = (0%¥)% ¢ = o®¥. A also computes &’ = F(a®¥, K) and verifies that this

quantity is equal to h. (If & # h’ then the protocol terminates with failure.)

2.4 Remarks

In each of the three attacks, £ does not learn the value of the session key K. The new attack
thus fails on the modified protocols because in each case B sends the hash value F(R, K),
where R is B’s random exponential (o¥, a®¥, a®, in protocols MTI/A0, MT1/B0 and MTI/CO0
respectively), thereby binding together the values R and K. E cannot subsequently replace the
value R with R® and compute F(R¢, K) since E does not know K.

Instead of F' being a cryptographic hash function, an option available is to choose F = Fk,
where E is the encryption function of a suitable symmetric-key encryption scheme, and K is
the session key established. Another way to foil the new attack is to require that each entity
prove to the trusted center that it knows the exponent a corresponding to its public key a?,
before the center issues a certificate. This can be achieved through zero knowledge techniques
(for example, see [1]).

We comment that the new attack also compromises each of the protocols in the 3 infinite
classes of MTI protocols; the attack can be thwarted in the same manner as was done here for
the 3 specific MTI protocols presented. The Goss authenticated key exchange protocol [4] is
similar to the MTI/AO0 protocol, except that the session key is the bitwise exclusive-or of oY
and a?%; that is K = o®¥ @ o®® instead of being the product of ¢®¥ and o*. Hence the attack on
the MTI/AOQ protocol and its modification can be extended in a straightforward manner to the
case of the Goss protocol. Also, Yacobi’s authenticated key exchange protocol [10] is exactly the
same as the MTI/A0 protocol, except that o is an element of the group of units Z;, where n is
the product of 2 large primes. Again, the attack on the MTI/A0Q protocol and its modification
can be extended in a straightforward manner to the case of the Goss protocol.

Lastly, we note that the modified protocols offer key confirmation from B to A.
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3 The Nyberg-Rueppel one-pass key agreement protocol

3.1 The protocol

The purpose of this protocol is for parties A and B to establish a session key K by only having
to transmit one message from A to B. We describe a particular variant of the more general
protocol presented in [8].

The system parameters for these protocols are a prime number p and a generator « of the
multiplicative group Z;. User A has private key @, 1 < a < p—2, and public key p4 = a®. User
B has private key b, 1 < b < p— 2, and public key pp = a®. The protocol assumes that 4 a
priori has an authentic copy of B’s public key; otherwise it is a two-pass protocol.

1. A selects random integers k and t, 1< k,t<p-—2.

2. A computes K = of, r = (pg)’a~* and s = k — ra mod (p — 1), and sends {r, s, text4} to
B.

3. B recovers the value o by computing o*(p4)" and then computes the shared secret K =

(ra*)?" = ot

3.2 The new attack

We describe a new attack on the Nyberg-Rueppel protocol which demonstrates that it does not
provide implicit key authentication. In the attack, a third party E wishes to have messages from
A 1dent1ﬁed as having originated from herself. To accomplish this, E selects a random integer
e, 1< e<p-2, computes pg = af, and gets this certified as her public key.

1. F intercepts A’s message {r,s,text4} and computes o = o*(p4)” and o” = ro*.

2. E then selects a random integer k', 1 < k¥’ < p — 2, computes ' = o’’a~* and & =
k' —r'e mod (p —1).
3. E sends {r',s,textg} to B.

4. B recovers the value o*' by computing o (pg)™ and then computes K = (r'a*')?™ = aot.

A and B now share the key K, even though B believes he shares a key with E; E does not learn
the value of K.

3.3 The modified protocol

One way to foil the attack is to modify the protocol by requiring A to also transmit h = F(p4, K),
where F is either a cryptographic hash function or an encryption function of a symmetric-key
system with key K. The modified protocol is the following.

1. A selects random integers k and ¢, 1 < k,t < p - 2.
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2. A computes K = of, r = (pg)ia~*, s = k — ramod (p— 1), and h = F(pa, K). A sends
{r, s, h,textq} to B.

3. B recovers the value o* by computing o® (pa)” and then computes the shared secret K =
(ro*)*™" = of. B also computes b’ = F(p4, K) and verifies that this quantity is equal to
h. (If h # B’ then the protocol terminates with failure.)

4 The new two-pass key agreement protocols

The purpose of the two-pass protocol presented in this section is for parties A and B to establish
a session key K. The protocols differ from the modified key agreement protocols of Section 2 in
that they are role-symmetric, non-interactive, and do not require hash functions or encryption.

The system parameters for this protocol are a prime number p and a generator a of the
multiplicative group Z,. User A has private key a and public key p4 = a®. User B has private

key b and public key pp = oP.

4.1 Protocol 1

1. A picks a random integer z, 1 < z < p — 2, and computes r4 = o and s4 = z —
raamod (p—1). A sends {r4,s4,texty} to B.

2. B picks a random integer y, 1 < y < p— 2, and computes rg = a¥ and sp = y ~
rgbmod (p — 1). B sends {rg, sp, textg} to A.

3. A computes a®B(pp)"® and verifies that this is equal to rg. A computes K = (rg)* = o*¥.

4. B computes o4 (p4)"4 and verifies that this is equal to r4. B computes K = (r4)? = o*Y.

Discussion

Protocol 1 is essentially a Diffie-Hellman key exchange with s4 serving as a signature for A’s
exponential, and sp serving as a signature for B’s exponential. One drawback of Protocol 1
is that it does not offer perfect forward secrecy [3, page 113]. That is, if an adversary learns
the long-term private key a of party A, then the adversary can deduce all of A’s past session
‘keys. The property of perfect forward secrecy can be achieved by modifying Protocol 1 in the
following way. In step 1, A also sends & to B, where z; is a random integer. Similarly, in
step 2, B also sends o' to A, where y; is a random integer. A and B now compute the key
K = o®¥ @ o®1¥1.

Another drawback of Protocol 1 is that if an adversary learns the private information z
of A, then the adversary can deduce the long-term private key a of party A from the equation
sa = z—r4a mod (p — 1). This drawback can easily be overcome in practice since a well designed
implementation of the protocol should prevent this private information from being disclosed.

The next protocol addresses the two drawbacks of Protocol 1.
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4.2 Protocol 2

1. A picks a random integer z, 1 < z < p— 2, and computes (pg)*, o® and sy = z +
a(pg)® mod (p— 1). A sends {o%,s4,textys} to B.

2. B picks a random integer y, 1 < y < p — 2, and computes (p4)?, @V and sp = y +
b(pa)¥ mod (p — 1). B sends {a¥, sp, textg} to A.

3. A computes (a¥)® and verifies that a°8(pg)~*"" = o¥. A then computes K = a®¥(pp)®.

4. B computes (%) and verifies that a®4 (pA)“’bz = a”. B then computes K = ab*(p,)?.

Discussion

Protocol 2 may be viewed as a modification of the MTI/A0 protocol (the key K established is
the same in both protocols) where s4 serves as A’s signature on her exponential o, and sg
serves as B’s signature on his exponential o¥. The signatures have the property that s4 can
only be verified by B, while sg can only be verified by A.

Protocol 2 improves upon Protocol 1 in the sense that it offers perfect forward secrecy. While
it is still the case that disclosure of private information z allows an adversary to learn the private
key a, this will not be a problem in practice because A can destroy z as soon as she uses it in
step 1 of the protocol. By contrast, in Protocol 1, having picked z in step 1, A has to securely
store z until she uses it in step 3.

If A does not have an authenticated copy of B’s public key then B has to transmit a certified
copy of his key to B at the beginning of the protocol. In this case, Protocol 2 is a three-pass
protocol.

5 The new one-pass key agreement protocol

The purpose of this protocol is for parties A and B to establish a session key K by only having
to transmit one message from A to B. The protocol assumes that A has a priori an authentic
copy of B’s public key; otherwise it is a two-pass protocol.

5.1 Protocol 3

1. A picks a random integer z, 1 <z < p— 2, and computes r4 = o® and s4 = ¢ —
rqamod (p — 1). A compute K = (pp)” and sends {ra,s4,texty} to B.

2. B computes a®4(pg)"4 and verifies that this quantity is equal to r4. B computes K =
(TA)b.

Protocol 3 can be viewed as an extension of the ElGamal variant of the Diffie-Hellman key
exchange (see [9]), with s4 serving as A’s signature on her exponential o®.

Protocol 3 has the same drawbacks as Protocol 1. It’s advantage over the Nyberg-Rueppel
one-pass protocol is that it does not require a hash function or encryption.
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6 A note on one-pass key establishment protocols

All one-pass key establishment protocols (i.e., both key agreement and key transport protocols)
have the following problem of replay. Suppose that a one-pass key establishment protocol is used
to transmit a session key K from A to B as well as some text encrypted with the session key
K. Suppose that E records the transmission from A to B. If E can at a later time gain access
to B’s decryption machine (but not the internal contents of the machine, such as B’s private
key), then, by replaying the transmission to the machine, E can recover the original text. (In
this scenario, E does not learn the session key K.)

This replay attack can be foiled by usual methods, such as the use of timestamps. There
are, however, some practical situations when B has limited computational resources, in which
case the following modification may be more suitable.

At the beginning of each session, B transmits a random bit string k in the clear to A. The
session key that is used to encrypt the text is then £ @ K. Since a different string % is selected
before each key agreement, the replay attack described above will fail.

7 Concluding remarks

All protocols discussed in this paper have been described in the setting of the multiplicative
group Z;. However, they can all be easily modified to work in any finite group in which the
discrete logarithm problem appears intractable. Suitable choices include the multiplicative group
of a finite field (in particular the finite field GF(2")), subgroups of Z; where n is a composite
integer, subgroups of Z; of order ¢, and the group of points on an elliptic curve defined over a
finite field.

All protocols discussed in this paper can also be modified in a straightforward way to handle
the situation when each user picks their own system parameters p and o (or analogous parameters
if a group other than Zj is used).
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