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Abstract: This document presents the operation of the high speed encryption
algorithm Akelarre. Akelarre is a secret-key iterated block cipher of great flexibility in its
security level, allowing the modification via software of such parameters as the number of
rounds and the key length. Presumably, it is cryptographically secure, due to the heavy use.
of data dependent rotations and the mixing of arithmetic operations from different algebraic
groups. The encryption and decryption algorithms are identical and of easy implementation
in both hardware and software.

1. Introduction

Akelarre is a secret key fast block cipher, suitable for hardware or software
implementations, the algorithm main operation is the data dependent cyclic rotation of prime-
length registers, combined with bit-wise XOR and two's complement addition. The architecture is
specially designed to ensure with a 100% probability that all the plaintext will always determine
at least one rotation. The use of prime-length registers avoid invariant rotations (output identical

to input), which could appear if composite-length registers were used.

These operations belongs to different algebraic groups, so that they are incompatible in
the sense that no pair of the three operations satisfies a distributive law or an associative law. The
operations are so arranged that the output of an operation of one type is never used as the input to
an opefation of the same type. In this way, any relationship between the plaintext, the ciphertext

and the key is hidden and the relationship statistics is very complicated.

Akelarre is an iterated r round block cipher. The output of each iteration, or encryption
round, is a complicated function of the output of the previous rounds and several sub-blocks

derived from the user's secret key. The user may supply a key of variable length in 64 bits




increments, while a key expansion algorithm generates the various 32 bit sub-keys needed be

used in the different encryption rounds.

Akelarre’s great flexibility relies updn the possibility of freely choosing such parameters
‘as’the key length, /, and the number of rounds, r, so that the user can modify the trade-off

between computation speed and demanded security.

The computational operations are simple, of easy implementation in high level language
and available in the assembler instruction set of all microprocessors and DSP’s. The hardware
design is still easier and more efficient, with low memory requirements. The cyclic rotations can

be readily programmed in high level language like a combination of two displacements.

The algorithm is word-oriented, the basic computational operations work on full computer
words of data at a time, saving computer time. In this paper we describe the 32 bit word length

version, but other versions for different word lengths have been designed.

As aresult, it provides high security when appropriate parameters have been chosen.

2. Notation and Akelarre primitive operations

Akelarre uses the following primitive operations over pairs of 32-bit blocks:

e Two's complement addition (and its inverse), denoted by “+”. It corresponds to the additive

groupin Z .
¢ Bit-wise exclusive-OR, denoted by “®”. It corresponds to the additive group in Z, .

e ' Cyclic left rotation: the cyclic rotation of word x left by y bits is denoted x%y.

A significant feature in Akelarre is the use of rotations, dependent on both the input data
and the key. That is, intermediate result words are rotated an amount determined by other
intermediate result words and the key, thus strengthening the cryptographic security of Akelarre,

because the bits are rotated to random positions, which are not -and cannot be- predetermined.

Therefore, the strength of Akelarre relies upon the cryptographic properties of data
dependent rotations and the mixing of operations from different algebraic groups having the same

number of elements.




Rotations as a powerful cryptographic tool wére successfully used in the nonlinear
generation of pseudo-random sequences [FUS93], structure patented in 1993. Since 1991 a
research work has been developed in the C.S.I.C. using rotations as nonlinear structures, as

described in the following works: [FUS91], [GUI91], [GUI9%4].

3. Description of the algorithm

This section describes the design of Akelarre, which consists of two components:
e The encryption/decryption algorithm.

¢ The key expansion algorithm, intended to generate a long enough key from the secret key

entered by the user.

3.1 Encryption algorithm

Figure 3.1 is an overview of the Akelarre algorithm. It is composed of three parts: the

input transformation,  encryption rounds, and the output transformation.

The plaintext is reorganised prior to its entry into the algorithm, being partitioned into
128-bit blocks, denoted by X. These blocks, once fed into the algorithm, are divided into four 32-
bit sub-blocks: X1, X2, X3 and X4. This four sub-blocks constitute the initial data to the input

transformation.

The input transformation consists of four 32 bit-block operations. The two sub-blocks X1
and X4 are two's complement added with the sub-keys Z, and Z,?, respectively. The other two
sub-blocks, X2 and X3, are bit-wise XORed with the sub-keys Z,® and Z,). The goal of this
transformation is to prevent the adverse effect of possible input blocks of all-zeroes or all-ones,

and to obstruct the differential cryptanalysis.

The first operation of the i-th encryption round is a cyclic rotation of the 128 bit block
formed by the concatenation of the results of the input transformation or previous encryption
round. The rotation is controlled by the seven least significant bits of Z,%. Then, the 128 bit

resulting block is divided into four 32-bit sub-blocks. The four sub-blocks are combined with




twelve 32-bit sub-keys, represented as Z,%,..., Z,.,9 according to the addition-rotation structure
shown in the figure 3.2.
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Figure 3.1 Akelarre algorithm design.




The output transformation consists of the cyclic rotation of the 128 bit block formed by
the concatenation of the results of the 7-th round, controlled by the seven least significant bits of
Z,5D, followed by four 32 bit-block operations in the same way as in the input trasformation,
using the sub-keys Z,*V, 7,00, 7,&D 7.V After the output transformation, the four sub-blocks

Y1, Y2, Y3, and Y4 are reattached to produce the output ciphertext block Y.

The goal of the cyclic rotations of the 128 bit blocks at the beginning of each round and at
the beginning of the output transformation, is to enhance the diffusion when more than one round
is used, although for one round operation has a low effect. Thus avoiding that the input data to the
output transformation were simply the output of the input transformation XORed with the outputs

Q1 and Q2 of each addition-rotation structure.
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Figure 3.2 Addition-rotation structure

Figure 3.2 shows the addition-rotation structure. It is formed by two columns, each of

them with six adders and seven rotators, where the amount rotated is determined by the other




column. This specially designed feature ensures with a 100% probability that all the plaintext and
key bits will always determine at least one rotation. The reason why in each rotation 31 bits
instead of the whole word are rotated is that a prime number has no divisors, whereas when a
composite number is used, and the data in the rotator have a repetitive pattern, with repetition
period equal to divisors of 32, an invariant rotation is produced, whose output result is identical to
the input. However, with a prime number, any pattern will lead to a different output for any

rotation. The convenience of this operation was studied in [GUI96].

In figure 3.2 it is observed how the 31-bit rotations are performed. In each 32 bit sub-
block the least or the most significant bit is left unchanged, alternatively. The remaining 31 bit
are rotated to the left an amount determined by the bits of the other column. The first 4 registers
of each column are controlled by a set of 5 bits, whereas the 3 last registers are controlled by a
set of 4 bits. The column C2 is controlled by the input bits of the column C1, but the column C1
is controlled by the output bits of the column C2. Akelarre is in fact a double iterated cipher, due
to it has a variable number of rounds, r, but each round can be seen as the iteration of 14 half-

rounds of rotation interleaved with 12 additions.

3.2 Decryption algorithm

The decryption algorithm is essentially the same as that for encryption and the
computational graph of figure 3.1 is still of application. The only change is that the decryption

key sub-blocks are computed from the encryption key sub-blocks as follows:

Round Encryption sub-keys Decryption sub-keys

Input transformation | Z,0 Z,°0 Z,® Z,® ZV ZFV 7 T 7 D

1 YA ASIW AL @z 2,029,709
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r Zl(r) Zz(r)---zu(r) (21(2))-1 Zz(l) Z3(1)___Zl3(1)

Output transformation |Z,"" 2,0 Z,&D 7,60 7.6+ (7 Oyl 7 O 7 0 7. © 7 ©

Table 3.1 Encryption and decryption sub-keys.




3.3 Key éxpansion algorithm

The user secret key length can be freely chosen, in 64 bits increments. But the algorithm
needs a much longer key, being the minimum 22 sub-keys of 32 bits (704 bits), needed for a one
round algorithm. Therefore, a key expansion routine is required to transform the user secret key &

into sub-keys to be used in the different encryption rounds.
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Figure 3.3 Key expansion algorithm.

The design of the expansion algorithm is depicted in figure 3.3. The user-selected key is

partitioned into m, k;. Each sub-block is squared and then added a constant Ajor A, mod2*. The
main reason that justifies the use of these constants is to avoid the adverse effect of a possible
user secret key of all-zeroes. They must be chosen as A,, A, # 2% —n?, with # integer, and with
a good statistical distribution of 1°s and 0’s, to prevent a possible null result of the sum, either
because the sub-key is zero or because the result of the squared is 23?, which would be internally
represented as 32 zeroes. In our implementation the values are: A, =~A49ED284H and
A,=735203DEH, they have been chosen carefully, to avoid weak keys. In the worst case, with the
values k=98F3H and k;,;=k;,,=BDC7H and after the first key expansion routine iteration, K; will
have the form XX00XXO00H, and the adjacent sub-key K.,, XXXXXXO00H, but in the next
iteration of the key expansion routine K,,; and K., will be of the form XXX XXXXH.




The 16 inner bits of the resultant addition are used to generate a new 32-bit word and
continue iterating, while the 8 most significant bits and the 8 least significant bits of two adjacent

columns are used to build up the sub-key K, in the way shown in figure 3.3.

The complicated non-linear function used to derive the sub-keys causes a avalanche effect

of bit changes: a change of an input bit will induce a change of 8 output bits, in average.

Note that each 16-bit sub-block is used to generate at least two adjacent sub-keys, and
usually much more sub-keys. Hence, an important avalanche effect is produced by the key
expansion routine. A typical configuration of 4 rounds of encryption with a 128-bit user key, will
need 61 sub-keys, to be generated from a set of 8 16-bit sub-blocks, it means that approximately
each sub-block is used to generate 16 sub-keys, so a one bit change 6f the user key will produce,

in average, a 128 bits change of the encryption sub-keys.

This key expansion function has been designed to be absolutely unidirectional, that is, the
calculation of a certain K; is of no avail to compute the previous K, ,. Even the knowledge of K,
turns out to be useless to determine K;,,, i.e., it is not only impossible to go backwards but to
move forward as well in order to gain insight of the expanded key from a given K. This feature is
of great importance as long as it prevents a possible cryptanalyst from obtaining the key
expansion starting from a known sub-key K;. The key expansion is pre-computed only once, thus

slighﬂy affecting the execution time of the algorithm.

After calculating all the K, sub-keys, they are read sequentially to fill the Z%? keys of the
table 3.1

4. Discussion on performance and security of Akelarre

Akelarre offers the possibility of freely choosing such parameters as the key length, /, and
the number of rounds, , so that the user can modify the compromise between speed and security.

For most applications, we propose that 4 rounds and 128-bit user secret key are used.

Several tests have been performed on a 130 MHz Intely Pentiumy,, using a sample
program working under Windowsg95 compiled with Microsoft Visual C++y 4.0 compiler. It

was obtained that Akelarre’s speed with the proposed conditions, was 3,22 Mbits/second.




Obviously, this speed will increase or decrease as less or more encryption rounds are used.

We have performed some tests, in the same conditions, with other block cipher
algorithms, and we have found that the speeds of IDEA and Akelarre are similar for the same
number of rounds, although it must be remembered thatlthe authors of IDEA recommend to use it
with eight rounds. Otherwise, RC5 with the author’s recommended configuration of 12 rounds,

and 16-byte secret key is about two times the speed of Akelarre with the above parameters.

The theoretical security evaluation is not yet completed. However, extensive statistical
tests have been performed and they show that there is no resemblance between the plaintext and
the ciphertext apart from statistical coincidences. Furthermore, that the distribution of 1's and 0's

approximates the ideal case of a perfectly random file.

As example, Figure 4.1. shows the graphs of the cross correlation test between plaintext
and ciphertext and the runs test, for 512-byte files of all-zeroes plaiintext, user key of all-zeroes,

one round and key length of 128 bits.
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Figure 4.1 Cross correlation test between plaintext and ciphertext files
and Runs test of ciphertext file.

In the table 4.1 we can see an example of how diffusion is achieved when a bit change
takes place in the key or in the plaintext, with a user key of 64 bits and one round only. It should
be highlighted that the change of one input data bit or one key bit is enough to produce a
difference of about 50% of encrypted data.




Plaintext _ Key Ciphertext Difference

0000 0000 0000 0000 0000 0000 6F06 02DF 74BO 117F
0000 0000 0000 0000 0000 0000 8372 49E9 72C2 FOCE

0000 0000 0000 0000 0000 0000 759A D74E 7166 4EA2 | 61 bits
0000 0000 1000 0000 0000 0000 OD9F 145A 7698 B79B 47.65%

0000 0000 0000 0000 0000 0000 B915 06A7 C751 6324 | 66 bits
0000 0000 0000 0000 0001 0000 D905 4DB1 2061 A315 51.5%

Table 4.1 Comparison between plaintext and ciphertext when one plaintext bit and one key bit is
changed with one round only.

Because of the double iterated architecture of Akelarre, differential and linear
cryptanalysis seem quite difficult. To simplify both attacks let us ignore the initial transformation
and the 128-bit rotations. And then let us operate on the smallest size cipher, that is one round.
Then we face up to the addition-rotation structure, which is itself an iteration of a simpler

structure, composed of alternated rotations and additions.

This structure presents a notable similarity with RC5 encryption algorithm, and can be
analysed in the same way. Kaliski and Yin [Kal 95] have found a way to attack to RC5 with
differential analysis focusing on characteristics for which the pair of inputs have the same
rotations amount, because ”... if a pair of inputs to a half-round have different rotation amounts,
then the pair of outputs from the half-round will differ in many bits”. They recognise that in the
opposite case the differential cryptanalysis will be unfeasible. In our design, the rotation structure
guarantees with 100% probability that a change of one bit in the plaintext will produce many
rotations. If an input bit to Cl is involved the least rotation number is 1 and the highest is 6,
whereas if an input bit to C2 is involved the number of rotations is 8, being the average 5-6
rotations. So we may suppose that Akelarre has a good security against the differential

cryptanalysis.

In the same paper, the security of RC5 against linear cryptanalysis is assessed when more
than 5 rounds of addition-rotation structure are used. We are using about 6.5 of similar rounds (14
half-rotations and 12 half-additions). Then, we can presume that Akelarre is not unsafe against

linear cryptanalysis.

10




N T S e

Taking into account the previous arguments, the statistical tests, and the fact that Akelarre
will always be used with more than one round, we conclude that, for most applications, 4 rounds
and 128-bit user secret key will be suitable. Nevertheless, we are working in a detailed security

analysis that we hope to be able to present in next cryptographic meetings.

S. Comparison with other block ciphers

Amongst all block cipher algorithms, the most widespread and probably most secure are
DES, IDEA [LAI90], and RC5 [RIV94]. DES, although still secure, is doomed as international
standard due to its short key length, of only 56 bits, allowing a brute-force attack to find the key
in an average of three hours and a half with a $1 million machine [WIE93]. Furthermore, it has
been broken by Shamir and Biham [BIH93] for a reduced number of rounds and for some
modified variants and modes of implementation faster than via exhaustive search. RC5 and IDEA
are counted amongst the possible candidates to become international data encryptiqn standard.
Actually, IDEA has been recently adopted as encryption algorithm by Pretty Good Privacy
(PGP).

RCS5 relies on data dependent rotations to frustrate differential and linear cryptanalysis.
However, in spite of the cryptographic strength of rotations, their use in RC5 turns out to be
insufficient, since in each rotation only the log,w least significant bits of the word w commanding
the amount rotated are taken into account. Consequently, the other w-log,w have no effect at all
on the rotation. In Akelarre, in turn, the 32 bits of each block are used, 5 or 4 bits in each rotation
(figures 3.1 and 3.2).

Given that the key expansion process adopted by RC5 allows the cryptanalyst to compute
the expanded kéy table S entry by entry in reverse order, it was possible to recover that table
without carrying out an exhaustive search. More specifically, the way in which rotations are used
in RCS helps an attacker considering that information about one bit of a half-input register can be
spread by the rotation in the last half-round to give information about every bit of the key S[2r+1]
[KAL9S].

On the contrary, in Akelarre, due to the design structure and the key expansion method, it

is impossible to perform a cryptanalysis in which the key expansion is computed, because the
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knowledge of a certain K; does not allow to compute K., nor K..;. Nevertheless, Akelarre equals
the desirable flexibility of RC5, concerning the possibility of choosing between such parameters

as the number of encryption rounds and key length.

Although in [LAI90] it is stated that the 3 operations are incompatible in the sense that no
pair out of them satisfies a distributive law, multiplication and integer addition satisfy a partial
distributive law, stemming from arithmetic modulo 2'%+1, which has been exploited in the
cryptanalysis of the first two rounds of IDEA [MEI93], even though it is not suitable for the
attack of complete 8-round IDEA. However, Akelarre overcomes this drawback by not using

multiplications but data dependent rotations.

Moreover, regarding facility of implementation and speed, Akelarre has the advantage
over IDEA of not using multiplications as nonlinear operations, which are time and resource
consuming, but rotations, of immediate computation in all microprocessors. However, because of
the heavy use of rotations, Akelarre’s and IDEA’s encryption round speeds are similar, for the
same number of rounds. Presumably, hardware implementations of Akelarre would be faster and
more feasible, provided that hardware rotation is much easier and much more economic than

multiplication.

Another shortcoming in IDEA is its key schedule: the 128-bit key is partitioned into 8
sub-blocks that are directly used as the first eight key sub-blocks. Next, the key is shifted to the
left by 25 positions, after which the resulting 128-bit block is again partitioned into eight sub-
blocks that are taken as the next eight key sub-blocks, and this procedure is repeated until all 52
key sub-blocks have been generated. Hence, the knowledge of sub-keys gives the attacker
information about the original 128-bit user key, which could be completely obtained, yet with
Akelarre's expansion method it is not only impossible to know the key sub-blocks previous to a

recovered k; but to compute key sub-blocks posterior to % as well.

7. Conclusions

A new block cipher, Akelarre has been proposed. One of its characteristic features is the
heavy use of data dependent rotations of prime-length registers, that is, the amount of rotations

performed depends on the input data and the key and, therefore, it is not predetermined.
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A second distinguishing feature is the design concept of mixing arithmetic operations

from different algebraic groups having the same number of elements.

The complete diffusion requirement is satisfied after a single round, as it can be observed
in table 4.1. The influence of individual plaintext or key bits should spread over all the ciphertext
bits, so that the change in one plaintext or key bit causes the change of about 50% of the
ciphertext bits, uniformly distributed all along the block. Diffusion is provided by the structure
called addition-rotation, represented in figure 3.2, which is an invertible transformation and has a
complete diffusion effect in the sense that each output sub-block bit depends on each input sub-

block and key bit.

The similarity of encryption and decryption means that in order to decrypt Akelarre it is
enough to repeat the same transformations performed throughout the encryption process. As we
are dealing with an involution, its repeated application with suitable keys, leads to the original

data.

The key expansion algorithm allows the generation of as many sub-keys as necessary
from a user-defined key of arbitrary length. These sub-keys are pre-computed in a way which
prevents the recovery of the initial user key or the computing of the expansion starting from a

known sub-key.

It is still soon to resolve about Akelarre's security, but it seems that either data dependent
rotations, the mixing of operations from different groups and the key expansion scheme adopted,
work together against possible cryptanalysis. After the first tests we recommend the use of
Akelarre with four rounds and 128-bit length key for most purposes, but more research on

algorithm security is been carried on, and final recommendations may be modified.

Acknowledgement - This paper was supported with C.I.C.Y.T., Spain, under grant
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CRISP Marcus Leech

CRISP: A Feistel cipher with hardened key-scheduling

Marcus Leech, Nortel Technologies

Algorithm

This paper describes a new Feistel block cipher, CRISP, that uses itself as a PRNG in the key-
scheduling function. The cipher consists of 6 rounds in which the left and right half input blocks
are alternately modulo-2 added to a non-linear function of the other half input block, and the cur-
rent key schedule bits.

ROUND 1 L 64 Bits R 64 Bits KSIN]

H

JO |a—

Y
KS[N+1] L R ROUND 2
™ £0
\
]
[ J
* ROUND N

The cipher uses a 128-bit key, with a 128-bit data block. The non-linear round function, f{), com-
putes a permute-substitute function of the current 88-bit key-schedule bits with the 64 input bits.
The 64-bit input is first expanded to 88-bits using XOR-combined 8x11 bit S-boxes. The result of
the expansion is then XORed with the 88 key bits, and fed through eight 11x8 S-boxes. The out-
put of the S-boxes is then processed through S2(), a function that uses five 8x32 S-boxes that are
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generated in a key-dependant way.
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CRISP

The ES() expansion function is defined as follows:

Marcus Leech
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Example values for the ES() function tables are listed in Appendix A.

S-Box design methodology

The primary S-boxes in CRISP are constructed according to design principals described in an arti-

cle on S-box design by Gordon and Retkin[1]. In that article, they make the cl
bility of linearity of an S-box is proportional to the inverse of the factorial of i

aim that the proba-
ts size. Each S-box

is based on a composition of eight 8x8 reversible, randomly permuted S-boxes. That is, for an 11-
bit input, the low-order 8 bits select an 8-bit value from an 8x8 S-box, while the high-order 3 bits
select which 8x8 S-box to use. This is identical to the structure used in the DES S-boxes.

The primary S-boxes are generated using a C program designed to find S-boxes with a given
threshold pairs-XOR count and threshold linearity; the program generates random S-boxes, mea-
sures the maximum pairs-XOR count, and linearity and discards any S-boxes whose pairs-XOR
count is above the threshold, or whose linearity is above the threshold. Linearity is computed by
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measuring the hamming distance between all possible output vectors (combined under XOR)
against all linear-boolean function vectors of the input bits. The resulting minimum hamming dis-
tance is then compared to the threshold; S-boxes with a lower minimum hamming distance are
rejected.

If the resulting S-box passes both the differential and linearity tests, it is also tested against the
first-order Bit Independence Criterion test, to ensure that no pairs of S-box output bits change
together more than 50% of the time, when the input changes by a single bit.

The evaluated version of CRISP uses S-boxes with a pairs-XOR threshold value of 30, and mini-
mum hamming distance of 0.45215 (926 /2048). The value 30 for the pairs-XOR threshold was
chosen because of a currently-uninvestigated runtime complexity phenomenon. When generating
random S-boxes in this way, the execution time of the generator increases non-linearly as the
threshold value decreases. It was determined that below a threshold value of 30, the program
tended towards infinite execution time. Initially, it was thought to be an artifact of the random-
number generator in use, so a new one was inserted, with exactly the same result. In any case, the
goal of the generator program is to reduce the maximum pairs-XOR count towards the perfect
value, which in the case of 11x8 S-boxes is 8 (2! / 28). The value 30 corresponds to a single-
round, single S-box probability of 1.46x102

The §() generation process requires approximately 40 CPU-hours on an HP9000/735.

Examples of S-boxes that correspond to the selection criteria are listed in Appendix B.

S2() function design

The S2() consists of five 8x32 S-boxes, generated in a key-dependant way. These 8x32 S-boxes
are used twice on the 8-bit outputs of the primary S-boxes to produce a 64-bit final result.

The S2() function provides an extra stage of confusion and diffusion within the round function. It
has the important added benefit of adding to the overall complexity of differential cryptanalysis,
reducing the single round, single S-box probability from 1.46x1072 to 8.82x10”7 (0.0146 *

(0.0078)?). This comes from recent results[2] on the differential cryptanalysis properties of ran-
dom 8x32 S-boxes.

Since the contents of the S2() S-boxes are unknown to the cryptanalyst, both linear and differen-
tial cryptanalysis are significantly hampered. '

Subkey generation

Subkeys are generated in such a way that if a given subkey is determined by cryptanalysis, it is
cryptographically difficult to determine the other subkeys from the known subkey.

This is achieved by using the basic CRISP encryption function as a pseudo-random number gen-
erator, using the key as a seed. This is accomplished in a multi-step process, described below.
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First, a “standard” key-schedule is loaded into the CRISP function, the standard key-schedule is
derived from the first 48 entries in table 0 and table 7 in the ES() function, combined with XOR.
This standard key-schedule is then perturbed by selecting bits from the input key, and XOR com-
bining them with the “standard” key schedule, 11 bits at a time. A total of 88 bits from the input
key are selected for use in perturbing the “standard” key schedule, as follows:

Input Key (128 bits)
. -~
31 21 0 = Not Used
I z
63 53 32
R
95 85 64
.
127 117 96

The 48 entries from the ES[0,7] XOR are grouped into six sets of eight elements, producing the
following table.

Table 1: Standard Key Schedule

Round 0 1 2 3 4 5 6 7
1 4CC | 079 |4AA | 7BC | 6C8 | 573 | 3DE | 5EC
2 63F | 6EF | 2BF | 1AE | 7F2 {253 |595 | 42E
3 5E3 |24B |7CB | 1D9 {324 {341 |2E6 | 1E2
4 142 | 47C | 26D |593 | 151 [028 |23D | 004
5 527 | 39F |30C |217 {01D |7A6 |55B | 1DB
6 TFA {271 | 64E |4B4 | 316 |53A |2B8 |3A9

Each row in this table is XORed with the corresponding (0 through 7) 11-bit value extracted from
the key. This slightly-perturbed key-schedule (phase one key-schedule) is then used in a feedback
execution of CRISP, to produce a new key-schedule. The feedback begins by using the key as the
initial cleartext, on each iteration, the feedback buffer is updated by XOR with the CRISP cipher-
text output. This phase two key-schedule is produced by using each output of the feedback execu-
tion of CRISP to produce 11-bit key-schedule elements that update the phase one schedule by one
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element on each iteration, for a total of 48 iterations. The diagram below illustrates this concept:

o 48 lterations of:

TII

bits
out

7<0>30mm

I_&éﬁﬁi

Key Schedule

128

-] ———

128

The final key schedule is produced by again using CRISP in a feedback mode, with the input key
as the initial cleartext, using the phase two key schedule, and the standard S2() function. Each
ciphertext output is considered as eight 16-bit values, each of which is XORed together, then
masked down to 11 bits to produce a key-schedule element. This process is repeated until all of
the key-schedule elements have been filled. There are eight 11-bit elements per round, with six
rounds in the evaluated implementation, for a total of 48 key schedule elements or 528 key sched-
ule bits.

Generation of the S2() function

The S2() function is computed in a similar fashion to the final key-schedule, using CRISP in feed-
back mode. This feedback execution is a continuation of the feedback execution used in generat-
ing the final key-schedule. Each output of the CRISP execution is considered as four 32-bit
values. The values are combined using XOR, with the resulting value being placed in the next
available S2() table element. If the 32-bit value has already been used in an S2() table element, it
is discarded and a new value is generated.

There are five 52() tables, each with 256 entries, for a total of 1280 32-bit elements.

Comparison of CRISP and DES round functions

The round function of DES takes a 32-bit input, and computes a non-linear function of that 32-bit
input. It accomplishes this using four discrete steps. The 32-bit data input is expanded using the E
expansion, then mixed with the 48-bit key-schedule bits. The resulting 48-bit value is then non-
linearly substituted using the eight 6x4 S-boxes. The final step is to permute the 32-bit S-box out-
put using the P permutation.

When examining the E expansion in DES, notice that it provides no guarantee that a given input
bit can affect more than one S-box. This makes differential cryptanalysis easier, since single S-
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boxes can be “isolated” for differential cryptanalysis purposes.

The cryptographic significance of the P permutation is assumed to be for the purposes of improv-
ing the diffusion properties of the round function, since the E expansion provides rather less diffu-
sion.

The CRISP algorithm has the same basic structure in its round function as DES. The round func-
tion takes a 64-bit input, expands it to 88 bits using the ES function, mixes it with the key, and
non-linearly substitutes the 88-bits using eight 11x8 S-boxes. When examining the ES function,
observe that each input bit affects two S-boxes, thus making differential cryptanalysis somewhat
harder. The ES function also provides, as a secondary effect, a small amount of non-linearity,
since it acts as a 16x11 S-box. The CRISP S-boxes, due to their size, provide higher a degree of
resistance both to differential and linear cryptanalysis than DES.

In CRISP, the post S-box function, $2, corresponds roughly to the P permutation in DES. Observe
that S2 provides a non-linear transform of the S-box outputs, while the P function in DES is
entirely linear. The S2 function also improves resistance to both differential and linear cryptanaly-
sis, since the S2 table elements are unknown to the cryptanalyst. Even if the cryptanalyst is able to
determine the contents of S2, it is assumed that the analysis of random 8x32 S-boxes, as described
in [2], would hold for the S2 function within CRISP.

Analysis of key-scheduling and S$2() generation

The strength of the key-scheduling and S$2() function generation algorithm is predicated on the
ability of the concatenation of round functions to act as a random, non-linear transform of the
input key material. The avalanche results shown later tend to suggest that CRISP does act as a
strong random transform, with good per-round non-linearity; the assumption is that the concate-
nation of rounds produces a non-linearity that is close to the product of the non-linearity of the
round function.

The purpose of the key-schedule algorithm is to produce a sequence of bits from the input key
material that can be used as per-round keys. Many encryption functions use a key-schedule algo-
rithm in which the round key bits are related to the input key in a way that is linear. The DES, for
example, uses a series of rotates and selects to produce round key material. This makes DES
slightly more vulnerable to differential cryptanalysis[4] than DES with purely-random, indepen-
dent round keys. This occurs because determination of one or more per-round key bits results in
determination of related bits in other rounds.

It has been proposed, most recently in [5], that the DES can be strengthened somewhat against
both linear and differential cryptanalysis by using the DES cipher itself as a PRNG in the genera-
tion of key-schedule bits.

The Blowfish[7] cipher also uses itself as a PRNG in the generation of both its S-boxes, and in the
generation of the P() round function. ' ‘

An early version of CRISP used MD5[6] as a PRNG in the generation of round keys, but it was
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felt to be overly complex, and not as compact as a key-scheduling algorithm that uses the CRISP
cipher itself as a PRNG.

If we assume that the cryptanalyst is able to determine the round key at a particular round, they
must be able to determine the plaintexts that correspond to the partial ciphertexts that constitute
the determined round key. Each 11-bit round-key element is the XOR of eight 11-bit sections of a
CRISP ciphertext, under an unknown key, with unknown plaintext. The problem, then, is to deter-
mine the full 128-bit ciphertext, and the corresponding plaintext, under an unknown key.

The cryptanalyst has a similar problem to solve when they are able to determine some values
within $2(). They must first determine, for a given determined 32-bit S-box entry value, the corre-
sponding 128-bit ciphertext, then the key-schedule and plaintext that produced it.

The performance of key-scheduling is entirely dependant on the performance of the CRISP algo-

rithm itself. The CRISP algorithm is called approximately! 1376 times in setting a new key. On
the hardware the algorithm was tested on, this corresponds to 20 milliseconds of real time. This
could be improved by changing the algorithm that produces S2() to produce four S$2() elements at
a time from the full-width 128-bit output of CRISP.

Avalanche Results

The avalanche properties were measured by iterating the CRISP encryption function 3,000,000
times, using a fixed, random key, and a random data input that is modified randomly by one bit on
each iteration. This process was repeated several times.

This results in an average change in the resulting ciphertext of 64 bits, which is 50% of the total
ciphertext bits. The minimum change ranges from 35 to 37, while the maximum ranges from 85 to
92. The minimum ciphertext change corresponds to somewhat more (0.273 to 0.289) than 25% of
the total bits in the ciphertext.

The DES under similar test conditions tends to produce an average ciphertext change of exactly
50% of the bits, while the minimum is usually somewhat less (0.203 to 0.234). The following

1. Since the S2() generation process can potentially call CRISP a variable number of times, due to its selec-
tion criterion.
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graph shows the distribution of ciphertext bit-changes for 3,000,000 iterations of the function:

CRISP Block Cipher Avalanche Test

Ciphertext Bit—-Change Distribution
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Differential Cryptanalysis Results

The pairs-XOR count distribution graph shows that the mean value for a pairs-XOR “intersec-
tion” over the entire S1 box from S() is 8:

CRISP S1 S-BOX
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This graph requires some explanation. The usual method to show pairs-XOR distribution uses a
table, with the output-XOR as columns, and the input-XOR as rows. The elements of such a table
convey the distribution of pairs-XOR values over the given S-box. The CRISP S-boxes are 11x8,
which means the resulting table would have 256 columns and 2048 rows; values that yield a
rather ungainly tabular display. The graph conveys the same overall information, showing that the
“Intersection” values are clustered around the so-called perfect distribution that would be
achieved if each intersection in the pairs-XOR table were equally likely. In the CRISP case, that
perfect distribution value would be 8 (2! / 28).

We can observe from the pairs-XOR distribution, that all of the primary S-boxes have the same
maximum pairs-XOR value of 30 (or a probability of 0.0146). There is no obvious advantage to
attacking a particular S-box over another.

The ES() function effectively acts as a fixed 16-to11 bit mapping between bits of the round func-
tion input, and input bits to a single S-box. The following table illustrates the mapping:.

Table 2: ES function input mapping

gﬁ:: ES box S-box
Pair pair affected

5and 6 Oand 1 SO

7 and 0 2and 3 S1

1and2 4 and 5 S2

3 and 4 6 and 7 S3

7 and 6 6 and 5 S4

Sand 4 4 and 3 S5

3and 2 2and 1 S6

land 0 Oand 7 S7

In effect, a new set of 16-by-11 bit S-boxes are synthesized by the input mapping to ES().

The problem for the cryptanalyst, then, is to find input octet pairs that produce the maximum dif-
ferential probability (by minimizing the number of S-boxes involved, and by selecting the highest
probability for each S-box involved). In DES, the pre-S-box expansion function, E, has the prop-
erty that for input pair X; and X, the equation E(X,;) XOR E(X,) = E(X; XOR X,) is always true. In
CRISP, the equivalent ES(X;) XOR ES(X,) = ES(X, XOR X,) is true for only a small number of
input pairs (approximately 1 in 2500). This means that a different approach is required when
engaging in differential cryptanalysis. The cryptanalyst must search for input pairs that satisfy the
equation ES(X;) XOR ES(X,) = I, where I is a desirable input XOR to a target S-box. Because
each such input pair controls both the so-called zarger S-box, and partially controls the input to
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two other S-boxes, via different ES() boxes, it is thought to be difficult to find input pairs that
simultaneously satisfy desirable input XOR conditions for the S-boxes they control.

Initial analysis of the density of pairs satisfying the criterion of a high-probability XOR in one S-
box, while having a zero XOR in the two other S-boxes linked via common input octets is esti-

mated to be 1 in 228, for randomly selected inputs. For example, S-box 0 is linked to S-box 4 and
S-box 5 via input octets 5 and 6. This means that the input to these three S-boxes is fully defined
by 4 input octets, (octets 4,5,6 and 7). The following input pairs for octets 4,5,6,7 satisfy the
above criterion:

X;=7068790E X,=D68D3980
X,=09FC3D28 X,=2898D918
X;=493238F2 X,=CBF8D398
X;=40D72FF9 X,=5465FB57

The above input values do not necessarily guarantee zero input XOR to the other S-boxes affected
by input octets 4 and 7 (S-boxes 3 and 1). :

It is surmised that inputs satisfying the more stringent criterion of having a high-probability input
XOR in one S-box, while having zero XOR in all the others have a very low density. Similarly,
inputs satisfying the criterion of having high-probability in two S-boxes, while having zero XOR
in all other S-boxes is of a similar density. Initial testing shows that the density may be less than 1
pair in 23*random input pairs.

The combined ES() and S() can be re-arranged (with SO as example), as follows:

Kn[0]
to ES5
input

octet 5
16 ESO 11 »11 S0 8——>
input
octet 6 |
to ES4

Given the above arrangement, we can compute the input XOR distribution for ES() that yields the
high-probability input XORs to the corresponding S() S-box. The SO box, for example, has 12
high-probability inputs XORs (that is input XORs, that have output XORs occurring with proba-
bility 0.0146). In SO, a high-probability input XOR is X’6AE’. An input XOR of X’03AA’ to ESO
leads to an ESO output XOR of X’6AE’ which in turn leads to an output XOR in SO of X’17°,
with compound probability 1.79 x 10-%. The following table shows examples of the highest com-

25




CRISP - Marcus Leech

pound probabilities of ESO input XORs producing a given SO output XOR.
Table 3: Example ES0/S0 XOR probabilities

ES [)(()]()Ilgput S[O;(%‘ﬁpm Probability
X°054F | X’EY’ 2.15E-5
X’0DAD’ | X’BS’ 2.06E-5
X°6635 | X°97 2.06E-5
X7008" | X17° 2.24E-5
X'7BI13 | X997 2.15E-5
X’81CB’ | X’DA’ 2.06E-5
X’8233% | X°4D’ 2.06E-5
XFD28" | X'97 2.06E-5

Since each input octet controls two S-boxes, a reasonable assumption to make is that at least two
S-boxes must be “involved” in a given single-round characteristic, thus giving a maximum single-
round probability near 4.8x1071° (X’700E’ to X’17°). If we assume that a six-round characteristic
can be constructed in which half the rounds have probability 1, and half the rounds have the prob-

ability 4.8x107'°, then without S2(), CRISP is theoretically vulnerable to differential cryptanaly-
sis, since the resulting probability near 1.10x10-% is greater than the probability near 2.9x10%
that would be necessary to make CRISP unconditionally resistant to differential cryptanalysis. If,
however, the best characteristic that can be constructed uses the probability of 4.8x10°1 in all but
one round, with a probability 1 characteristic in one round, then CRISP would be unconditionally

resistant to differential cryptanalysis, since the resulting probability is near 2.5x10%7. No attempt
has yet been made so find the best 6-round characteristic for CRISP, since S2() is assumed to
defeat differential cryptanalysis.

If an average-case S2() function is factored into the differential probability analysis, then the
algorithm is unconditionally resistant if the best six-round characteristic has probability 1 in three
of the rounds, and probability near 2.92x10°!* in the other rounds, producing an aggregate proba-
bility near 2.55x1041.

Appendix C contains complete tables of high-probability XORs for the eight ES/S combinations.

Linear Cryptanalysis Results

Work on linear cryptanalysis is in progress at the time of writing.

Resistance to the Birthday Paradox under CBC

Under Cipher Block Chaining mode, this cipher is more resistant than ciphers with smaller block
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sizes to the Birthday Paradox, which states that, if 2%2 plaintexts are encrypted under CBC (where
n is the blocksize in bits), the probability of there being two equal ciphertexts is 0.5. If two identi-
cal ciphertexts correspond to different plaintexts, then there exists a known XOR relation between
the two plaintexts.

Since CRISP has a 128-bit block, the. probability is vastly less than with 64-bit ciphers.

Resistance to attacks based on non-surjective round functions

An early version of the algorithm used four S-boxes in S2(). This produced a round function that

was non-surjective (approximately 40% of the 2% outputs were impossible). This lead to the
round function being theoretically vulnerable to an attack described by Bart Preneel in [3].

In practice, such an attack is unlikely to succeed, due to the very large tables that must be con-
structed, on the order of 223 elements, or approximately 2% bytes. Because the round-keys are 88
bits, even with a conservative estimate that the entropy is lower than the 88 bits suggested by the
key size, an attack is also unlikely to succeed, even when enough table space is available.

CRISP was made substantially more resistant to this attack by the addition of a fifth S-box in the
S52() function, thus making less than 4% of the 2% outputs impossible.

The performance penalty for implementing this was approximately 12.5%, with a 1K byte mem-
ory penalty.

Performance and Memory Requirements

The algorithm was implemented in C, using the GNU-C compiler on an HP-9000/735. The 6-
round version produces an encryption rate of approximately 45,000 encryptions per second, or an
equivalent data rate of 6.14Mbits per second. Using the native HP/UX compiler produces an
approximate 4% performance improvement. There are opportunities for optimization; in particu-
lar, the S-box outputs may be composed with the S2() function in a single table, reducing the
number of table-lookups required in f{) by 30%.

The tables used to implement ES(), S(), and S2() consume only 25K bytes of memory, which is
easily within reach for a microprocessor/embedded controller implementation. The executable
code on an HP9000/7XX system is approximately 3K bytes. Implementation complexity can be
reduced by changing the key-scheduling algorithm to produce only the key-schedule elements,
and dispense with key-dependance in the S2() algorithm; the resulting cipher is then potentially
subject to standard differential, and linear cryptanalytic attack.
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