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Abstract,

The security and efficiency of two recently proposed block ciphers, BEAR and
LION, both based on a hash function and a stream cipher, is discussed. Meet-in-
the-middle attacks are presented which can be used to dramatically reduce the
complexity of a brute-force key search on both these ciphers. A new block cipher is
described which is not susceptible to meet-in-the-middle attacks, is provably secure
against any chosen plaintext or ciphertext attack, and is more efficient than BEAR
or LION.

1 Introduction

A number of examples exist which show how cryptographic primitives can be composed
to yield other cryptographic primitives. Two examples of this are the well known output-
feedback mode of DES which converts a block cipher into a stream cipher, and feedforward
mode which converts a block cipher into a hash function. Often, these compositions are
provably secure in that an efficient attack on the composite function would lead to an
efficient attack on the underlying primitive.

These types of construction are of practical interest, as there often exist efficient
cryptographic primitives which, although not provably secure, are widely believed to be
secure because of empirical evidence. Composing such primitives to yield higher level
functions can lead to new cryptographic functions that are practical to implement and
have the advantage that their security is based on the security of trusted primitives.

In this paper we examine the security of two recently proposed constructions, BEAR
and LION, which allow block ciphers to be created from a stream cipher and a hash
function. The resulting block ciphers are provably secure in that a key-recovery attack
that can be mounted with a single plaintext ciphertext pair can be used to break both
the hash function and the stream cipher. We show that although these ciphers are
provably secure, they are susceptible to meet-in-the-middle attacks which greatly reduce
the complexity of a brute force key search.

We also propose a new construction. This is a block cipher which is more efficient
in terms of computation than either of the above schemes, is not susceptible to meet-in-
the-middle attacks, and is provably secure against any combination of chosen plaintext
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or ciphertext attacks. This cipher is also of practical interest, as it can be implemented
very efficiently in software.

The remainder of the paper is divided as follows: Section 2 gives a brief review of BEAR
and LION. Section 3 discusses the security of BEAR and LION and presents attacks on
them. Section 4 presents AARDVARK a new block cipher that is similar in construction to
BEAR and LION. Section 5 discusses the performance of actual implementations of BEAR,
LION, and AARDVARK. Section 6 summarizes this work and presents an open problem in
this area.

2 BEAR and LioN

In this section we present BEAR and LION, two very recent block ciphers due to Anderson
and Biham [AnBi96]. Both these ciphers are constructed from a stream cipher, S, and
a hash function, H, using a construction similar to those of Luby and Rackoff [LuRa88].
The requirements on S and H are:

1. H is one-way, given only H(X) it is hard to find X;

2. H 1s strongly collision free, it is hard to find distinct X and ¥ such that H(X) =
H(Y);

3. 5 resists key recovery attacks, it is hard to find the seed X given Y = S(X);

4. S resists expansion attacks, it is hard to expand any partial stream of Y = § (M),
l.e., given some subset of Y it is hard to determine anything more about Y.

The block size, m, of these ciphers is variable, but is on the order of 1Kbyte-1Mbyte.
If we define k as the block size of the hash function used then both these ciphers are
unbalanced Feistel networks in which |L| = k and |R| = m — k.

BEAR performs encryption and decryption using two applications of a hash function
and one application of a stream cipher. A BEAR key consists of two sub-keys, K; and
K3, both of size |K| > k. BEAR encryption and decryption is done by:

Encryption Decryption
R=Re® S(L) R=R®S(L)
L =L@HK2(R) L =L€BHK1(R)

LION is similar in construction to BEAR except that encryption and decryption involve
one application of the hash function and two applications of the stream cipher. Again, the
key consists of two sub-keys, K; and K3, both of size k. LION encryption and decryption
are done by: *

Encryption Decryption
R=Ro S(L& K;) R=R@ S(L&® K,)
L =Le H(R) L =L&HR)

R=Ro S(L o K,) R=Ro S(L& K,)
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BEAR and LION are potentially very efficient ciphers given the speeds at which modern
stream ciphers and hash functions operate. Anderson and Biham report encryption rates
of 13Mbits/sec for BEAR and 16Mbits/sec for LION'.

3 Security of BEAR and LION

BEAR and LION are provably secure in the sense that an oracle that can recover the key of
BEAR or LION given one plaintext/ciphertext pair can be used to “break” the underlying
keyed hash function and stream cipher. In the case of the hash function this means that
the oracle can be used to undermine the one-way and collision free properties. In the
case of the stream cipher, the oracle can be used to undermine the “resists key recovery”
property.

While provable security is a desirable property, it does not tell the whole story. In the
case where an adversary is able to break either the hash function or the stream cipher, the
adversary can obtain partial information about the plaintext given just the cipher text.
These properties are discussed by the authors. The authors also discuss attacks such
as differential and linear-cryptanalysis which require many plaintext/ciphertext pairs.
They argue that a successful attack on BEAR or LION using these techniques would yield
a successful attack on either the hash function, the stream cipher or both. The authors
also suggest that these types of attacks can be avoided by using a different key to encrypt
each block of data. This is a reasonable approach given BEAR’s large block size

An interesting property of BEAR is that given only half the key bits, namely the bits
of K, an attacker can determine most of the plaintext. Given a ciphertext L' and R', and
the sub-key K, an attacker can determine the plaintext R by doing a partial decryption:

[* = I' ® Hy, (R)
R=FR & S(L%)

Since |R)| is typically much larger than |L| this means that an attacker can determine
most of the plaintext without any further cryptanalysis. This is clearly not a desirable
property.

A brute force key search on BEAR would be of complexity 2X! but this can be
reduced considerably through the use of a meet-in-the-middle attack [MeHe81). Given
a plaintext/ciphertext pair, P = (L, R), C = (L', R'), the attacker computes and stores
Hy,(R) & L for all 2! possible values of K;. Using these stored values the attacker
then start computing Hy,(R') @ L' for all 2K possible values of K, until she finds K
and K, such that Hg, (R)® L = Hg,(R') ® L'. She can then test if this is the correct
key-pair by verifying whether S(Hg,(R) ® L) = R® R' or not. The correct key-pair will
be found using at most 2%+ encryption operations. Of course, such an attack is largely
theoretical, as the value of |K| is likely to be 128 or more.

The same type of partial decryption attack that was demonstrated against BEAR can
be used against LION to recover L if K, is known. However, this attack is less effective

LA software implementation on a 133MHz DEC Alpha using SHA as the hash function and SEAL as
the stream cipher
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Figure 1: The AARDVARK cipher.

against LION as it only allows the attacker to recover L, which would typically not be
more than 256 bits in length.

A similar meet-in-the-middle attack can be mounted against LION as was demon-
strated against BEAR. In this case the attack is mounted on the stream cipher S and the
attacker attempts to find K; and K, such that S(K1 @ L)® R= S(K.® L') ® R and
verifies candidate key pairs by checking whether Hy, (S(K1® L) R) =L @ L'.

The existence of meet-in-the-middle attacks against these ciphers leads one to believe
that they are not as secure as a cipher with a 256+ bit key size could be. In the following
section we discuss a new block cipher which is similar in construction to BEAR and LION,
uses only a single key of length approximately &, and is not susceptible to meet-in-the-
middle attacks.

4 AARDVARK

This section presents a new block cipher, which we call AARDVARK?. AARDVARK is
based on a stream cipher, S, a hash function, H, and a keyed hash function, H'. Like
BEAR and LION, the block size of AARDVARK is variable with values of 1Kbyte-1Mbyte
recommended. Unlike BEAR and LION, AARDVARK is not a Feistel network and has the
property that the ciphertext is slightly larger than the corresponding plaintext. As we
will see, this property is not undesirable as it allows users to verify the integrity of a
message during decryption.

An AARDVARK network is shown pictorially in figure 1. An AARDVARK key, K, is
a bit string suitably long for keying H'. It is recommended that |K| be greater than
or equal to the number of bits output by H’. Encryption in AARDVARK consists of one
application each of the hash function and the stream cipher and an application of the
keyed hash function on a short (< 512 bit) string. This produces two values, C* and C’,
both of which make up the ciphertext C = (C*,C’). Encryption is done by:

C* = H(P)
C' = P & S(Hk(C™)

2 All the exotic animal names were already being used.
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Decryption is done by:
P =C'@ S(Hy(C))

To verify that a ciphertext was not modified, either maliciously or by accident, the
receiver can also verify that H(P) = C*. Thisis particularly important since an adversary
could easily modify the ciphertext in such a way that the plaintext is changed in a
predictable manner. This is because flipping a bit in C’ has the effect of flipping the
corresponding bit in the decrypted plaintext.

To ensure the security of AARDVARK, S and H must have the following properties:

1. H is strongly collision free, it is hard to find distinct X and Y such that H(X) =

H(Y);

2. H' resists existential forgery, given an oracle that computes Hy for an unknown K
it is hard to compute Hy (X) for any X without using the oracle directly;

3. S resists expansion attacks, it is hard to expand any partial stream of ¥ = S(M);

4. S and H' are independent, there is nothing about S and H’ which allows someone
to compute S(Hg (X)) easily without knowing K.

The strength of AARDVARK lies in the difficulty of computing Hj (X') without knowing
K. Since S and H are independent, this makes computing S(Hy (X)) difficult, which in
turn makes computing the encryption and decryption functions difficult. We now prove
the main theorem about the security of AARDVARK.

Theorem 1. Given two oracles, one which computes Ex and one which computes Dk
for an unknown K, it is hard to find (P,C) such that Ex(P) = C without using one of
the oracles to compute Ex(P) or Di(C) directly.

Proof. Suppose (bwoc) that we have an efficient attack which allows us to find such
a (P,C) without using the oracles directly. Using this attack we find a valid plain-
text/ciphertext pair, (P,C), without using the oracles to compute C = Eg(P) or
P = Dg(C) directly. During the attack one of two situations occurred:

1. We found two distinct plaintexts P, and P, such that H(P) = H(P).
2. We did not find two distinct plaintexts P, and P such that H(Py) = H(P,).

In the first case, we found a collision in H which contradicts the strongly collision
free assumption on H. In the second case, we were able to find (P,C*,C’) such that
C'= P ® S(Hy(C*)) and C* = H(P). In particular, since we did not find a collision in
H, we are able to compute P @ C’ = S(Hy,(C*)), where without using the oracle directly.
This contradicts either our assumption that H' resists existential forgery (since we were
never given the value of Hg(C*)) or that S and H' are independent.
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Block Size 4096 65536 | 1024000
AARDVARK | 1024000 | 2952072 | 3277849
BEAR 853333 | 1790601 | 1909735
LioN 602353 | 2184533 | 2568991

Table 1: Encryption rates of AARDVARK, BEAR and LION for various block sizes. Block
sizes are given in bytes. Encryption rates are given in bytes/second.

This theorem says that AARDVARK is secure against any combination of chosen plain-
text/ciphertext attack provided that the above mentioned requirements on H and S are
met. Security is defined in a very general sense: it is not computationally feasible for
an attacker to find a single valid plaintext/ciphertext pair. This is a powerful result,
since hash functions and stream ciphers exist which (for practical purposes) satisfy these
requirements.

The attentive reader may have noticed that we have not made use of the “resists
expansion attacks” requirement placed on S. It is, however, an important requirement.
Since the block size of AARDVARK is large, it is possible that an adversary may know
some of the plaintext of a message which means that the adversary knows a partial output
of S. The “resists key expansion” requirement on S prevents such an adversary from
learning any more about the plaintext.

AARDVARK is clearly resistant to meet-in-the-middle attacks since the key is not
divided in any way, and has a built in method of ensuring ciphertext integrity. Since
AARDVARK uses only one application each of the hash function and stream cipher plus
an application of the keyed hash function on a short bit string, one would also hope that
it would run faster than BEAR or LION.

5 Performance of AARDVARK, BEAR, and LioN

In order to test the relative performance of AARDVARK, BEAR, and LION we implemented

them. SHA [NBS93] was used as the hash function and SEAL [RoCo93] as the stream
cipher. In BEAR and AARDVARK, SHA was keyed using Hj- (M) = SHA(K||M||K). The
stream cipher was given by S(M) = SEALp(0)||SEALp(1)]| - --. The test machine was a
Sun Ultra-Sparc with a 140MHz Ultra-1 processor. All source code was written in C and
compiled using gcc with optimization enabled.

All three ciphers were tested with various block sizes.The results are shown in table
1. As we would expect, AARDVARK outperforms BEAR and LION for all block sizes, with
encryption rates varying from 1Mbyte/sec with a 4KByte block size to 3.2MBytes/sec
with a 1MByte block size.

A perhaps surprising result is that BEAR outperforms LION for small block sizes, but
the opposite is true for larger block sizes. This is because SEAL runs faster than SHA, but
has a high key setup time. Because of this, LION which uses two applications of SEAL is
slower for small block sizes, but as the block size is increased, the key setup times become
less important and LION overtakes BEAR. This suggests that a stream cipher with a low




key setup time is called for.

6 Conclusions

Meet-in-the-middle attacks on both BEAR and LION have been presented which, although
largely theoretical, suggest that these ciphers are not as strong as they could be. A new
block cipher has been proposed which is more efficient than BEAR or LION, is provably
secure against any combination of chosen plaintext and/or ciphertext attacks, and has
a built-in method of verifying ciphertext integrity. This work is of practical interest as
SHA/SEAL based AARDVARK makes for a very fast software block cipher.

As noted in section 5 and in [AnBi96], the key setup times for the SEAL stream cipher
have a significant negative impact on the performance of block ciphers based on it. BEAR,
LION, and AARDVARK could be made substantially faster by the development of a stream
cipher with lower key setup times. This is the subject of ongoing research.

As with all new cipher proposals, we encourage cryptanalysis of AARDVARK. Such
analysis could take the form of attacks against general AARDVARK or against specific
instances of AARDVARK (e.g. SHA/SEAL based AARDVARK).
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Abstract

A one-way hash function is an important cryptographic primitive for digital sig-
natures and authentication. Recently much work has been done toward construction
of other cryptographic algorithms (e.g., MACs) using hash functions. In particular,
such algorithms would be easy to implement with existing codes of hash functions if
they are used as a black box without modification. In this paper we present new such
constructions for block ciphers and MACs in some general form (i.e., with variable key
sizes, block lengths and MAC lengths).

1 Introduction

Hash functions play an important role in various cryptographic protocol designs. They are
used as a cryptographic primitive for digital signatures and message/user authentication.
Consequently a lot of optimized implementations of hash functions, such as MD5 [23] and
SHA [24], exist. In this paper we describe several algorithms constructed from keyed hash
functions: DES-like block ciphers, stream cipher-like algorithms and MAC algorithms. All
our constructions are parameterized, so that suitable parameters can be chosen depending
on applications. For security of these algorithms we require the underlying hash function
to be pseudorandom. This requirement seems not too restrictive since widely accepted hash
functions are believed to behave pseudorandomly.

Furthermore, all the algorithms presented in this paper were designed only using the un-
derlying hash function as a black box. This has two important advantages. First, the hash
function can be easily replaced if some serious weaknesses are found in the hash function or
if newly designed hash functions are preferred (from the viewpoint of security or efficiency).
Easy implementation is another practical advantage. Such algorithms can be easily imple-
mented using widely available hash codes. These advantages will be the main motivation for
the design of hash-based cryptographic algorithms. If a slight modification (e.g., in initial-
izing variables or padding rules) is allowed, we may obtain a little better efficiency in some
algorithms.
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2 DES-like Ciphers from Hash Functions

2.1 Background

The famous paper by Luby and Rackoff [19] showed that a pseudorandom permutation
(a super pseudorandom permutation, resp.) can be constructed from three (four, resp.)
pseudorandom functions by using them as the round functions in three(four, resp.)-round
DES. The resulting three-round block cipher is then provably secure against chosen plaintext
attacks, and the four-round cipher is secure against chosen plaintext/ciphertext attacks.
Though we can construct pseudorandom functions from any one-way function, they are not
practical for use in block cipher design. Instead, hash functions may be used to approximate
pseudorandom functions (e.g., see [7]).

Our main objective in designing hash-based block ciphers is to use well established and
widely deployed one-way hash functions (e.g., MD5 [23], SHA [24] and RIPEMD [9, 15])
as a cryptographic primitive for block ciphers. We here note that recently MD4 and MD5
have been shown not collision-free [12, 13, 14]. However, the fact that MD5 is not collision-
iree does not mean that it is easy to find collisions for secretly keyed MD5. Anyway, for
security of block ciphers based on hash functions we need a more stronger assumption on
the underlying hash function, i.e., its pseudorandomness.

2.2 Ouwur Construction

There have been published several block ciphers based on one-way hash functions. Kaliski
and Robshaw [16] designed a fast block cipher with a large block size by applying MD3 design
technique. Anderson and Biham [1] proposed block ciphers based on the unbalanced Feistel
structure using hash functions and stream ciphers. A similar implementation only using
hash functions was proposed by Lucks [18]. As mentioned before, since we want direct call
of hash functions as a subroutine, we do not try to improve performance either by modifying
hash functions (as in [16]) or even by using compression functions (as in [18]). Thus our
construction is straightforward from Luby-Rackoff’s results.

Since most well-known hash functions process messages by 512-bit blocks, this block size
will be assumed throughout this paper. This means that if we only need compression of one
message block, the input length should be restricted to less than 448 bits (Note the padding
length of 1 to 512 bits and 64-bit encoding of message length in MD4 family hash functions,
except for HAVAL [26]). The user-supplied secret key can be of any length within a certain
maximum due to the restriction of at most 447-bit one-block message. The use of variable-
size secret keys, which is particularly easy to implement in hash-based block ciphers, may
be useful for export control and software key escrowing (e.g., see [4, 5]). The secret key for
normal use is often recommanded to be 128 bits long.

e Notations:

— r: number of rounds in DES-like cipher (r > 3).
— b: bit-length of plaintexts/ciphertexts (block size).
— [: bit-length of hash output (typically 128 or 160).
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— N: bit-length of hash input (typically 512).

— H : secure hash function.

e Key Scheduling:
The subkeys {K;}"._, required by r rounds are derived from the user-supplied secret
key K as
K;=H(u;, K) forte=1,2,---,r,

where u;’s are defined by u; = wu;_1+ 0x9e3779b9 (mod 2%?) with u; = 0xb7el5163
(¢ >1). ’ .

e F Function: F(K,X)=Y
The round function F accepts the round key K of [ bits and data X of % bits, and
outputs ¥ of % bits as _

Y = H(K,X) mod 2*/2.

e Encryption/Decryption
The encryption and decryption processes are the same as in most Feistel-type ciphers.
Let the plaintext P as P = Lo||Ro, where |Lo| = |Ro| = 2. Then the ciphertext C is
computed as:

Li - Ri—l,
Ri == Li_]_ @F(I{i,R{_1) fOI‘ 7= 1,2,' e, T

The ciphertext is given by C = R,||L,. The decryption process is the same as the
encryption process, except that the subkeys are applied in reverse order.

The security of the above block cipher depends heavily on the pseudorandomness of the
underlying hash function. The three round version of the cipher will be provably secure
against chosen ciphertext attacks under the assumption that the hash function is pseudoran-
dom. And the four round version will be provably secure against combined chosen plaintext
and ciphertext attacks under the same assumption. These are the main results of Luby
and Rackoff [19]. Though no dedicated hash functions can be shown to be pseudorandom,
it is widely accepted that well-designed hash functions should behave like a pseudorandom
function. Otherwise, non-pseudorandomness could be exploited to break some of the design
goal of the hash function. Thus the above three or four round Luby-Rackoff cipher seems
practically secure for any block size.

Under the assumption that the secret key used is large enough to defeat an exhaustive
key search attack, the most practical threat to iterative block ciphers comes from the dif-
ferential and linear cryptanalysis methods [8, 20]. It seems quite unlikely that keyed hash
functions used as round functions have any differential and/or linear characteristics useful
enough to attack the cipher. In particular, truncation of keyed hash outputs is expected to
provide stronger resistance against such attacks even if the keyed hash function has some
vulnerabilities. In this respect, the most prudent choice of block size would be b = [, i.e.,
use only half of the hash output. For example, with this choice one can obtain a 128-bit
cipher from MD5. We may even increase the number of rounds if four rounds turned out to
be insufficient, of course at the expense of performance. '
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The speed of the cipher depends on the speed of the hash function used and the choice of
the parameters r,b. More specifically, we can expect that the described cipher can encrypt
data at the speed of ;l]’v times the speed of the hash function. For example, the cipher using
MD5 and b = [ = 128 will be about 12 times slower for » = 3, and 16 times slower for r = 4
than MD5. For the same number of rounds, the cipher with b = 2 will be two times faster
than the cipher with b = [.

3 Stream Cipher-like Algorithms

3.1 Basic Construction

We can also construct block ciphers by using a keyed hash function as a key stream generator.
The resulting ciphers run much the same way as stream ciphers. Suppose that the message
X to be encrypted consists of n subblocks of b bits, i.e., X = z1]|z2||-- - ||zn, where |z;| = b
fort=1,2,---,n — 1 and z, may be less than b bits. Then we may generate a sequence of
b-bit random numbers from a keyed hash function and then encrypt X by xor-ing with this
random numbers. However, such a cipher is vulnerable to the attack of reusing key streams
under known plaintext attacks. This is true for any stream cipher if suitable precautions are
not taken. We overcome this problem by adding kind of MAC for the ciphertext.

o Key stream generation:
Choose a one-time random seed s of 4 bits and generate a sequence of b-bit random
numbers G(s) = z1||2z2|| ... ||z as

R = H(K,s), Ry=0,
R, = H(R,Ri-1),
z = Rimod2®, i=1,... . n—1,

z, = KR; mod olenl

The key stream generator runs in output feedback mode and only the first b bits of
the outputs are used as a key stream. Thus, if b < I, this will make it more difficult to
derive the secret K from known key streams even with an exhaustive search.

e Encryption:
Given a message X, compute the ciphertext C = (C1,C3) as

Ci, = XOG(s)=x1® z1]| - ||zn ® 24,
C; = s®H(K,C,K) mod 2°.

The second part of the ciphertext, Cs, plays two important roles. First, it securely
conveys the one-time random secret s to the receiver. Second, it provides resistance
against known plaintext attacks. That is, even if the key stream {z;} is revealed, an
adversary cannot use this key stream to encrypt his chosen message.

e Decryption: ,
The decryption process is straightforward: first recover s from C,, generate G(s) as
before and then recover X from C;.
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It is easy to see that the above cipher is secure if the hash function used behaves like
a pseudorandom function. One disadvantage of this encryption method, compared to the
previous block cipher, is the message expansion due to the additional transmission of Cj.
Therefore, this cipher seems not suitable for encryption of very short messages. However, we
note that such expansion is necessary in any xor stream cipher to prevent known plaintext

attacks.

The above cipher runs about b_+51_v_ times slower than the underlying hash function. For
example, the cipher with b = % = 64 will be about 9 times slower than the underlying hash
function with [ = 128 and N = 512. This will be the most prudent choice for the block size
b.

3.2 Improved Schemes

We can devise block ciphers with better performance by breaking down and incorporating
the computation of C; into each step of key stream generation through ciphertext feedback
mode. First consider the following cipher:

e Encryption: For a given plaintext X = {z1,22,---,Zs}, Where |z;] = b for ¢ =
1,2,---,n—1and |z,| =t < b, compute the ciphertext C' = {¢1, ¢z, ,Cny1} as:

1. choose a b-bit random seed s and compute R = H(K, s).

2. set yo = ¢o = 0 and do the following steps for ¢ = 1,2, - -, n, successively.

R = yllz = H(R,yi1]lciz1),

G = z;9D 2,

where |y;| =1—0b, |z;| =bfori=1,2,---,n—1 and |z,| = ¢.
3. compute the last ciphertext block as

Cnt1 = 8D H(K,c, ® 1) mod 2%
4. output the ciphertext C = {c1, ¢, ,Cnt1}-

e Decryption: The following process recovers the plaintext X from the ciphertext C.

1. recover the secret seed s from the last three ciphertext blocks as

8= cpp1 ® H(K, ¢ ® cpn—1) mod 2%

2. compute R = H(K,s).

3. set yo = co = 0 and do the following steps for z = 1,2, - - -, n, successively.

R, = yillzi = H(R,yi-1|lci-1),

r, = ¢ Dz,

where |y;| =1—b, |z;] =bfor i =1,2,---,n— 1 and |z,| = ¢.
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4. output X = {z1,22, -, Zn}.

In the above cipher the unused part of the ¢-th hash output y; and the ciphertext ¢;
are used to compute the (7 4+ 1)-th random number R;;;. Thus we can view that the block
cipher runs in ciphertext feedback mode together with output feedback of hash function (if
b < [). Note that the seed s, randomly chosen at each encryption time, is encrypted in the
last block, so that it can be recovered only with knowledge of K. This enables the receiver
to first recover s and then decrypt the ciphertext. We used ¢, & c,—1, instead of c,, in the
last block encryption, since the last plaintext block z,, thus c,, may be very short.

On the other hand we may use a non-secret seed as in the following scheme.

e Encryption: The following process encrypts the plaintext X = {z, s, -, .}, where
|z;| = bfori=1,2,---,n~1and |z,| = ¢ < b, into the ciphertext C = {co,¢1,- -, Cnr1}.

1. set ¢y to a randomly chosen b-bit number and coxﬁpute R = H(K,c).

2. do the following steps for i = 1,2,---,n, successively.
R = yillz = H(R, Yi-1llei-1),
¢ = ;P 2,
where |y;| =1-0, |z =bfori=1,2,---,n—1 and |z,| = t.
3. compute the last ciphertext block as
cnt1 = H(R, ynllcn) mod 2°.
4. output the ciphertext C = {co,c1," -, Cnt1}-
o Decryption: The following process recovers the plaintext X from the ciphertext C.

1. compute R = H(K,cp).

2. do the following steps for : = 1,2,-- -, n, successively.

R; = yillz = HR,yi-1]lcim1),

r; = ¢ Dz,

where |y;| =1 -0, |z;)|=bfor i =1,2,---,n— 1 and |2,| = ¢.

3. check that chy1 = H(R,yn|cn) mod 2°. If the check succeeds, output X =
{1,229, -+, Tsn}. Otherwise, output NULL.

The above cipher requires one block more transmission. But this enables the receiver to
check the legitimacy of the ciphertext, and thus to remove the possibility of being exploited
as a decryption oracle under a chosen ciphertext attack scenario. The public seed s may be
replaced with other data, such as date/time at the encryption time.

The described two variants of the cipher runs a little faster than the original one. They
are about —1;1 times slower than the underlying hash function. For example, the cipher with
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b= % = 64 runs about 8 (compared to 9 in the previous scheme) times slower than the
underlying hash function with ! = 128 and N = 512.

Finally, note that as far as we use one extra block ¢,41 to encrypt one-time random secret
(as in the first variant) or to protect the last plaintext block (as in the second variant), it is
not necessarily required to use a different session key R for each encryption. However, the use
of different session keys is almost free in out setting since it only requires one computation
of compression function.

4 Randomized MAC from Hash Functions

4.1 Related Work

There have been published a number of papers dealing with construction and analysis of
MAGs from hash functions and block ciphers. In particular, much attention has been paid
to MAC constructions from keyed hash functions in recent years (e.g., see [25, 17, 11, 21, 6,
3, 22]), probably because one can directly use widespread implementations of hash functions
such as MD5 and SHA, and because they are faster than MACs from block ciphers such as
DES.

Two preferred methods for constructing MACs from keyed hash functions are the envelope
method and the HMAC construction. In the envelope. method, the MAC for message X is
generated as MAC(X) = H(K, X, K) with one key or as MAC(X) = H(K;,X, K;) with
two keys [25, 17, 21]. These MACs overcome some weaknesses existing in the secret prefix
method (e.g., an appending attack) and in the secret suffix method (e.g., an off-line collision
search attack on the hash function) (see [21, 17] for further information). The HMAC
method produces MACs as MAC(X) = H(K,H(K, X)) or MAC(X) = H(Ky,H(K,, X))
[17, 3]' These constructions are in popular use, since they are simple, easy to implement with
existing hash codes, and have some evidence for security under reasonable assumptions on
the hash function [2, 3]. All these MAC constructions, however, are susceptible to birthday-
type attacks against MAC forgery and key recovery described in [21, 22], though the required
number of known text-MAC pairs is impractically large for most choices of parameters.

On the other hand, Bellare et al. [6] proposed a new approach for MAC construction,
called XOR MAC, based on any finite pseudorandom function. It is a first MAC algorithm
allowing parallel processing and incrementality. For example, when using a hash function,
to authenticate a message X = z1]|z2]| - - ||zn, the sender picks at random R and computes

Z=HO,RK)DH(1,<1> 2 ,K)®H(1,<2>,25, K®---® H(l, < n >, z,, K),

where < 7 > denotes the binary representation of block index . Then the MAC of X consists
of MAC(X) = {R,Z}. This is the randomized XOR MAC, called XMACR, based on the
hash function. They also presented the counter-based XOR MAC, called XMACC, where a
counter C is used instead of a random R. We note that it would be better to use the secret

1More precisely, the prepended secret key should be padded with some padding strings to one complete
block, so as to give the effect of using a random and secret initial value. This is also true for the envelope
method in actual implementations. '
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prefix method for the computation of Z in XMACR to prevent the off-line collision search
attack on the hash function.

The above XOR MAC schemes seem to resist the general attack by Preneel and van
Oorschot [21, 22] due to the involvement of a random or counter number. However, there
exists another MAC forgery attack on the XMACR scheme, as shown in [6]. That is, we can
forge a MAC with high probability if about 2/2 MAC queries are available (assuming | R| = 1).
For example, from three MACs for messages X1 = z1||22, X2 = z{||z2 and X3 = z;]|z), i.e.,

Z = H(0,Ri,K)®H(1,<1>,21,K)® H(l,< 2>, 12, K),
Zy = H(O,Ry, K)® H(1,<1>,21,K)® H(1,< 2 >, 25, K),
Zy = HO,R3,K)® H(1,<1>,z;,K)® H(1,< 2 >, 75, K),

we can easily see that if we can find two MACs for X; and X, with R; = R,, then the MAC
for X, = ||z} can be obtained by

Zi=70® %% % = HO,Rs, K) & H(1,< 1 >, 2, K) ® H(,< 2 >, 2}, K).

Finding Z, and Z, with R; = R, requires about 2¢/2 MAC queries for X; and X,.

4.2 Our Construction

We now present a new MAC construction from keyed hash functions. The basic idea is to
generate a completely randomized MAC, so that known MACs do not provide any useful
information for MAC forgery. The processes for MAC generation and verification are as
follows:

e MAC generation: MAC(X) = {D1, D2}

S = H(K,X),
Dy = H(K,R,S) mod 27,
D, = R& H(K,Dq,S) mod 2,

where R is a random 1-bit number chosen by the sender (0 <t < b <t +1).
e MAC verification:

S' = H(K,X),
. R, = D2 D H(K, Dl,S/) mod 2t,
Dy = H(K,R,S)mod 2t 7

The secret key is often recommanded to be at least ! bits long. The length of MAC is b
bits, and the parameter ¢ determines the level of randomness involved and the probability of
- arandomly guessed MAC being correct (which is 27¢-%). An appropriate choice of b and t
for MD4 family hash functions would be b = 2t = 128. Note that taking ¢ = 0 in our scheme
results in the HMAC construction [3] if the secret key K is padded to an N-bit block in each

45




computation of the hash function. Thus we can view that our construction corresponds to
a randomized version of HMAC, which we call HR-MAC.

Compare our MAC with Bellare et al.’s XMACR with one message block (the whole
message X), which consists of {R,Z}, where Z = H(0,R,K) @ H(1,X, K) mod 2’ with
|R| = t. HR-MAC requires compression of one more block. However, in HR-MAC, the
number R randomly chosen each time is hidden from, and more tightly combined to, the
MAC. This increases the complexity of MAC forgery under known/chosen text attacks,
since it is hard to even verify that internal collisions occur in S, and effectively defeats the
cancellation attack applied to XMACR. We thus can see that HR-MAC is more robust than
XMACR, in particular when used to construct XOR MAGCs.

HRX-MAC (Randomized XOR MAC from hash functions): For fast authentication in high
speed applications or in applications where the message needs to be frequently updated (e.g.,
as in databases), we need an extremely fast MAC algorithm. The XOR MAC approach
proposed by Bellare et al. [6] provides a good alternative for such applications. Our HR-
MAC can be easily modified to XOR MAC; just divide the message X into subblocks {z;},
of predetermined length, say m, and compute the value of S as

S=PHK,<i>z),

=1

where the block index ¢ is represented as a 32-bit number. The efficiency of this XOR MAC
is slightly worse due to the repeated use of the secret K.

We may allow the sender to determine the length m of subblocks to be divided and
involve m in the computation of a MAC, i.e.,

D, = H(K,m,R,S) mod 2",
D, = R@®H(K,m,D;,S) mod 2'.

Of course, m should be transmitted in this case. This may provide better flexibility for MAC
processing according to applications.

5 Conclusion

We have presented fast encryption and authentication algorithms constructed from keyed
hash functions. These algorithms may be useful in many applications, since we can use
widely deployed hash implementations as a subroutine for coding these algorithms. This
will result in easy implementations and efficient storage usage.
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