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Abstract: In this paper we propose a special class of substitution-permutation encryption
networks. This class has the advantage that the same network can be used to perform both
the encryption and the decryption operations. We determine the cryptographic properties of
these networks such as avalanche characteristics, expected cycle length and the resistance to
both differential and linear cryptanalysis. Further, it is shown that using an appropriate linear
transformation between rounds is effective in improving the resistance in relation to these two
attacks. A key scheduling algorithm which,satisfies certain design principles is also proposed.

1. Introduction

Feistel [6] was the first to suggest that a basic substitution-permutation network (SPN) consisting

of iterative rounds of nonlinear substitutions (s-boxes) connected by bit permutations was a
' simple, effective implementation of a private-key block cipher. The SPN structure is directly
based on Shannon’s principle of a mixing transformation using the concepts of “confusion” and
“diffusion” [22]. Letting N represent the block size of a basic SPN consisting of R rounds of
n X n s-boxes, a simple example of an SPN with N = 16, n = 4, and R = 3 is illustrated in
Figure 1. Keying the network can be accomplished by XORing the key bits with the data bits
before each round of substitution and after the last round. The key bits associated with each
round are derived from the master key according to the key scheduling algorithm.

One advantage of the basic SPN model is that it is a simple, yet elegant, structure for which
it is generally possible to prove security properties. Indeed, it has been shown that a basic
SPN can be constructed to possess good cryptographic properties such as completeness or
nondegeneracy [10], adherence to the avalanche criterion [9], and resistance to differential and
linear cryptanalysis [8].

The basic SPN architecture differs from a DES-like architecture in which the substitutions and
permutations, used as a mixing transformation, operate on only half of the block at a time.
Since SPNs do not have this last property, in general, SPNs need two different modules for
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the encryption and the decryption operations. In an SPN, decryption is performed by running
the data backwards through the inverse network (i.e., applying the key scheduling algorithm in
reverse and using the inverse s-boxes and the inverse permutation layer). In a DES-like cipher,
the inverse s-boxes and inverse permutation are not required. Hence, a practical disadvantage of
the basic SPN architecture compared with the DES-like architecture is that both the s-boxes and
their inverses must be located in the same encryption hardware or software. The resulting extra
memory or power consumption requirements may render this solution less attractive in some
situations especially for hardware implementations.

One proposal to overcome this problem is to use a single s-box and its inverse for both
the encryption and the decryption. This idea was employed in SAFER[13]. Unfortunately,
in SAFER, the encryption and the decryption are different and one still needs two different
hardware modules.

In this paper, we introduce a special class of substitution-permutation networks. This class
has the advantage that the same network can be used to perform both the encryption and the
decryption operations. The basic idea is to use involution substitution layers and involution
permutation layers or linear transformations. We investigate the resistance of these networks
to both differential and linear cryptanalysis: it is shown that using an appropriate linear
transformation between rounds is effective in improving the security of the SPNs in relation
to these two attacks. This paper also demonstrates the effectiveness of the proposed linear
transformation in improving the avalanche properties of the cipher and further results suggest
that the cyclic properties of the overall network are not negatively influenced by the cyclic
properties of the involution s-boxes. As well, a key scheduling algorithm is proposed that has
the advantages of preventing weak keys and ensuring that, given that key bits in a particular
round are compromised, it is hard to get any information about the key bits of other rounds.

2. S-boxes

2.1 Semi-Involution Functions

It is possible to construct SPNs which do not require inverse s-boxes if the s-boxes in the network
belong to the class of functions that we refer to as semi-involution functions. Such functions
have the property that their inverses can be easily obtained by a simple XOR operation on the
function input and output. Hence, differences between the s-boxes in the encryption network and
the decryption network can be accommodated by incorporating the XOR into the application of
the round key bits.

Definition: A bijective function 7 : Z§ — Z? is called a semi-involution function if
X)) =1(X®a) Db | (1)

for some constants a,b € Z7.
Involution functions are the sub-class of semi-involution functions for which ¢ = b = 0.
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Figure 1: SPN with N = 16, n = 4, and R = 3.

Lemma 2.1: A semi-involution function as defined above has ¢ @ b as a linear structure.

Proof: LetY = 77} X) and, from (1), we have Y @ b = 7(X @ a). Therefore, X =
Y ®b) ®a. Hence, 7(Y) = 7~ (Y Hb) ® a. Now replacing ¥ @ b with X gives
(X ®b) = 771 X)Pa. From (1), 7(X & a)®b = 7(X & b)Da. Replacing X with X Db gives

T1(XDadb)=7x(X)Dadb, - (2)

which is the definition of a linear structure [5], [16]. ]

Thus a semi-involution function has Naoxay = 2" where Naxay is the XOR difference
distribution table entry[3] for input AX = a @ band AY = a®b For a®b # 0 this
renders the SPN trivially broken by differential cryptanalysis. This means that, if we want to
use the same SPN for both the encryption and decryption, then only semi-involution s-boxes
with @ = b can be used. -

The following lemma shows how the useful class of semi-involution functions can be obtained
from involution functions.

Lemma 2.2: Let ¢ : 75 — 775 be an involution function, then the function #(X) = ¢(X) ® a
is a semi-involution function such that a = b, i.e., 771(X) = 7(X ® a) @ a.

Proof: From the definition of involution functions, ¢?(X) = X. Hence, 7(7(X) ®a) ®a = X.
Replacing X with X @ a gives 7(X @ a) ® a = 7~ 1(X). N

Lemma 2.2 is important, not only because it provides an easy way to generate the useful class of
semi-involution functions from involution functions, but also because it implies that the functions
#(X) and w(X) belong to the same cryptographic class and hence they have the same linear
approximation table[15], and the same XOR difference distribution table[3].

The only cryptographic difference between involution s-boxes and semi-involution s-boxes with
a = b,a # 0, is their cyclic properties. All cycles of involution functions have length one or
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two. In SPNs where the key bits are XORed with the data bits at the s-box input, if we assume
that all the key bits are equi-probable, then both the SPNs built using semi-involution s-boxes
with @ = b # 0 and the SPNs built using involution s-boxes will have the same cryptographic
properties. In the rest of the paper we will focus on the class of SPNs that use involution s-boxes.

Remark: In an SPN where the s-boxes are keyed by selecting between sets of mappings
(and not XORing the key bits with the data bits), then the cyclic properties of involution
and semi-involution s-boxes may be an important difference in their cryptographic properties.
Unfortunately this class of SPNs requires storage for a large set of s-boxes and, hence, is not
attractive for practical implementations.

An interesting class of involution mappings is the inversion mapping in GF(2™) defined as [18]:

-1
W(X)z{g( ) §ig- 3)

Different cryptographic properties of this mapping were studied in [18]. This inversion mapping
is differentially 2-uniform if n is odd and it is differentially 4-uniform if n is even. The
nonlinearity of this mapping is given by N L(7) > 27~1 — 97/2,

The above class of s-boxes can be generated using different irreducible polynomials. The number
of monic polynomials of degree » which are irreducible over GF(g), where ¢ is any prime
power, is given by [1], [12]:

1
=D u(d)g™/? @

dim

where p(d) is the Mdbius function given by

1 ,d=1 .
p(d)s (=1)" ,dis a product of r distinct primes (35)
0 , otherwise.

For n = 8, we have 30 irreducible polynomials of degree 8 and hence we can generate 30 such
s-boxes. All these 30 s-boxes have nonlinearity equal to 112 and maximum XOR table entry
equal to 4. In order to frustrate possible algebraic attacks, the SPN should use s-boxes generated
using different irreducible polynomials. Another approach is to use randomly generated s-boxes
so that the overall cipher would not have any easy algebraic description. In section 2.3 we study
some of the cryptographic properties of such randomly generated involution s-boxes.

Lemma 2.3: The number of involution functions = : Z7 — Z¥ is given by

o(n=1)
2n!
;0 @1 ) (@)= ©)
Proof: See the appendix. Al
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2.2 Equivalence Classes

Two s-boxes 7y, 7o are said to belong to the same cryptographic class if
(X)) =7 (X ®a)®b @)

for arbitrary constants a,b € Z5.

The use of s-boxes within the same cryptographic classes was suggested as a means to design
SPNs that are resistant to differential cryptanalysis [23]. Unfortunately, involution s-boxes can
not be used in such SPNs because, as shown in the following lemma, if two involution s-boxes
belong to the same cryptographic class then they posse a linear structure.

Lemma 2.4: If 7 and 7y are both involution mappings and
(X)) =m (X Da)Db )]

then 71,79 have a @ b as a linear structure.

Proof: By noting that m2(X) = 71(X @ a)®b then we have 73(X) = 71(m1(X ® a) D a O b)®
b. But we also have 72(X) = X and, hence, m1(71(X ©a) ® a @ b) ® b = X. Thus, we have
(X @ a)@a®b = 77 (X @ b). Replacing X &b by X and noting that 771 (X) = m1(X) gives

M(X®adb)=m1(X)Dadb )

which is the definition of a linear structure. By a similar argument, one can show that 75 also
has a @ b as a linear structure. ‘ ]

2.3 Number of Fixed Points

Involution s-boxes have the characteristic that all cycles are of length one or two and, as will be
shown, have a larger expected number of fixed points than a randomly chosen s-box. Although
there is no known effective cryptanalytic attack directly based on the existence of fixed points
in the s-boxes, it is of interest to determine if a large number of fixed points affects other
cryptographic properties, such as the nonlinearity and the maximum XOR table entry, that lead
to other cryptographic attacks . '

Figure 2 shows the experimental results for the average nonlinearity and the average maximum
XOR table entry as a function of the number of fixed points for 8-bit random bijections and 8-bit
random involutions. One thousand random bijective s-boxes and one thousand random involution
s-boxes were tested for each point. The graphs were derived by incrementing the number of
fixed points by 2. The graphs clearly indicate a strong correlation between the cryptographic
properties and the number of fixed points and suggest that the s-boxes should be chosen to
contain few fixed points.
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Figure 2: Average Nonlinearity and Average Maximum XOR Table Entry Versus the Number of Fixed Points (n = 8)

- We now calculate the expected number of fixed points for a random bijection and for a random
involution.

Lemma 2.5: The expected value of the number of fixed points for a random bijective mapping
is 1.

Proof: See the appendix. ' [
Similarly, one can show that the variance of the number of fixed points is also 1.

Lemma 2.6: The expected number of fixed points for a random involution mapping is given by

2n—1 Zn—l

E(Vg) = X 2i0(n,i) | 3 #(n,i (10
i=0 =0
where o
2mi) =T rEy ()
Proof: See the appendix. ]

Numerical substitution in the formula above shows that the expected number of fixed points of a
random involution exceeds that of a random injective mapping by a large factor. For example, an
8-bit involution mapping is expected to have about 16 fixed points. Fortunately, the construction
proof of Lemma 2.3 can be used to generate involution functions with a predetermined number
of fixed points. A special case of interest is involution functions with zero fixed points since this
seems to optimize their cryptographic properties (see Figure. 2). The number of such functions
follows from the proof of Lemma 2.3 and can be approximated using Stirling’s formula as follows

2™ 2"
on—1192"—1 N\/_( ) : (12)
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3. S-box Interconnection Layer

In order to use the same SPN to perform both the encryption and the decryption operations,
the s-box inter-connection layer should also be an involution mapping. One permutation layer,
applicable to networks for which N = n?, with nice cryptographic properties [8] and which
satisfies the involution requirement is described by: output bit ¢ of s-box j at round r is connected
to input bit j of s-box ¢ at round r + 1. ,
In [8] it was shown that with such a permutation layer we can develop upper bounds on the
differential characteristic probability [3] and on the probability of a linear approximation [15]
as a function of the number of rounds of substitution. Unfortunately, to achieve good bounds,
with a relatively small number of rounds, it is suggested to have s-boxes with a large diffusion
order [8]. Letting AX and AY denote the input change vector and the output change vector,
respectively, an s-box satisfies diffusion order of A, A > 0, if for wt(AX) >0,

0 otherwise.

where wi(-) denotes the Hamming weight of the enclosed argument.

Our depth-first search algorithm could not find any 8 x 8 involution s-boxes with diffusion order
‘greater than 1 (without the involution constraint, some 8 x 8 s-boxes with A = 2 were found
in [8]). As an alternative to this, the authors in [8] proposed the use of an invertible linear
transformation between rounds. The SPN resistance to linear and differential cryptanalysis was
very encouraging. Unfortunately, their proposed linear transformation is not very attractive in
practice as it requires a bit XORing operation of all the output bits of the round.

“We propose a more efficient linear transformation that runs much faster. Moreover it has
improved bounds for the linear approximation and the differential characteristic. The linear
transformation between rounds of s-boxes is described by

M
2i)= @ w(i), 1<i<M 19

1=1,l#1

where z(:) represents the i n-bit output word of the transformation, w(s) is the i input word,
M = % denotes the number of s-boxes, and @ denotes a bit-wise XOR operation. It is assumed
that M is even. For 8 x 8 s-boxes this is a byte oriented operation. One can easily check that
this linear transformation operation is an involution. ' '

The linear transformation described above may be efficiently implemented by noting that each
z(2) could be simply determined by XORing w(z) with the XOR sum of all 2(j),1 < 7 < M, i.e,

2(1) = Q & w(z), (15)
where
M
Q = P w(). (16)
I=1
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Equation (16) above requires (M — 1) word-oriented XORs (which can be done in parallel in
logyM steps) and equation (15) requires M word-oriented XORs (which can be done in one
step). Hence for a 64-bit SPN using 8 x 8 s-boxes, the above linear transformation requires
7 + 8 = 15 byte-oriented XORs compared to 63 + 64 = 127 bit-oriented XORs required for
the linear transformation of [8].

4. Resistance to Differential and Linear Cryptanalysis

Using an approach similar to the analysis in [8], it is possible to establish upper bounds on
the most likely differential characteristic and linear approximation expression using the linear
transformation of (14). The results of this section are obtained by assuming that all the round
keys are independent.

4.1 Differential Cryptanalysis

The following lemma gives a lower bound on the number of s-boxes involved in any 2 rounds
of a differential characteristic.

Lemma 4.1: Consider an SPN with M s-boxes, M > 4. If the SPN employs the linear
transformation described in (14), then the number of s-boxes involved in any 2 rounds of a
differential characteristic is greater than or equal to 4.

Proof: (Sketch) From the linear transformation expression one can check that if only one s-box
is involved in round r this implies that M — 1 s-boxes are involved in round r + 1. If 2 s-boxes
are involved in round r, (14) ensures that at least 2 s-boxes will be involved in round »+ 1. The
rest of the proof follows by noting that the minimum number of s-boxes involved per round is
1. 1
The number of chosen plaintext/ciphertext pairs required for differential cryptanalysis of an R
round SPN (based on the best characteristic and not the best differential [19],[14]) may be
approximated by [3], [8]

1

ND - )
PQR—l

17)

where Pgq,,_, is the probability of the best B — 1 round characteristic. This probability can be
bounded by

Pap_, < (Ps)* (18)
where the maximum s-box XOR pair probability is given by Ps = Af—'—ﬁ with Mg denoting the
maximum entry in the XOR distribution tables of the s-boxes used in the SPN and « is the total

number of s-boxes involved in the characteristic. For even R, from Lemma 4.1 and assuming
that only one s-box will be involved in round E — 1 then we have

a24<£22-—1)+1=2R—3, (19)

139




- N e

and, hence,
1
D2 -~—%R3"
( Pg)ZR 3
Using 8 x 8 involution s-boxes with maximum XOR table entry of 10 (easily found by
randomly selecting involution s-boxes), an 8 round 64-bit SPN that utilizes the proposed linear

transformation will have Np > 259% chosen plaintext/ciphertext pairs required for differential
cryptanalysis. If we use the inversion s-boxes given by (3), then we will have Np > 278,

(20)

4.2 Linear Cryptanalysis

The following lemma gives a lower bound on the number of s-boxes involved in any 2
round linear approximation and is based on the assumption of independence between linear
approximation of different rounds.

Lemma 4.2: Consider an SPN with M s-boxes, M > 4. If the SPN employs the linear
transformation described in (14) then the number of s-boxes involved in any 2 rounds of a linear
approximation is greater than or equal to 4.

Proof: (Sketch) If the number of s-boxes involved in round r + 1, [, is odd, then the number
of s-boxes involved in round r is M — [. If [ is even, then the number of s-boxes involved in
round r is [. The lemma above follows by considering different values for [. O

For an SPN based on n x n s-boxes, the number of known plaintexts required for the basic
linear cryptanalysis (algorithm 1 in [15]) may be approximated by [8]

1 .

Np = 21)
[P -3
where
Pr — %‘ < 27HP)” | (22)
and 2"l — NL
P (22500, @

with /'L denoting the minimum noﬁlinearity [17] of the s-boxes used in the SPN and « is the
total number of s-boxes involved in the linear approximation. From the above argument we have

a> 4(-?) = 2R, (24)

and, hence,

1
Np 2 W . (25)

Using 8 x 8 involution s-boxes with nonlinearity of 98 (easily found by randomly selecting
involution s-boxes), an 8 round 64-bit SPN that utilizes the proposed linear transformation will
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have Nz > 2%%-98 known plaintext/ciphertext pairs required for the basic linear attack. Since
this number is greater than the size of the plaintext set, we interpret this to mean that the basic
linear attack is not effective against this class of SPNs, even if we use all possible plaintexts. If
we use the inversion s-boxes given by (3), then we will have Ny > 2%,

Remark: There are other types of linear transformations that greatly improve the resistance of

the algorithm to differential and linear cryptanalysis. An example of such transformations is the

one based on Maximum Distance Separable (MDS) codes [12] described in [21]. In this case, the

number of s-boxes per round involved in any linear approximation expression or a differential

characteristic is equal to the number of s-boxes per round + 1, which is the maximum theoretical

possible number. Unfortunately, the above linear transformation is not an involution. Moreover, -
it is not efficient for hardware implementation.

5. Avalanche Characteristics of the Network

An SPN is considered to display good avalanche characteristics if, for a fixed key, one bit
change in the plaintext input is expected to result in close to half the ciphertext output bits
changing. Good avalanche characteristics are important to ensure that a cipher is not susceptible
to statistical attacks and the strength of an SPN’s avalanche characteristic may be considered as
a measure of the randomness of the ciphertext.

2
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Expected Number of Bit Changes

2 3 ‘4 5 [~
Number of Rounds

Figure 3: Expected Number of Bit Changes Versus the Number of Rounds

Figure 3 shows the experimental results for the average number of output bit changes as a function
of the number of rounds for a 64-bit SPN with a permutation layer and a linear transformation
layer. One thousand random chosen input pairs, different in one randomly selected bit, were
used to obtain the result. The SPN used for the experiments employed 8 x 8 involution s-boxes
‘with zero fixed points, nonlinearity of 96, maximum XOR table entry of 10, and a diffusion
order equal to 1. The results of Figure 3 suggest that the linear transformation significantly
improves the avalanche characteristics of the cipher. Analytical model for the SPN avalanche

‘characteristics is developed in [24].
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6. Cyclic Properties of the Proposed SPN

A significant difference between an involution s-box and a non-involution s-box is likely to be
their cyclic properties. For a randomly chosen #-bit bijective mapping, the expected value and
the variance of the number of cycles are both approximately equal to log.(2") =~ 0.69n [7]. The
expected value of the cycle length is equal to 2"~ + 1/2 [4].

For an involution mapping with Ny, fixed points, the expected cycle length is given by

prXl 4 (Qn—pr)XZ_Z_pr

= . (26)
and the number of cycles is given by 2”71 + Ny, /2.
8.0 8.0
| SPNs with random involution s-boxes ‘e | SPNs with random bijective s-boxes

0.0 m—
X 1 10000 20000 30000 40000 50000
1 10000 20000 30000 40000 S0000 60000 70000 60000 70000

Cycle Length ' Cycle Length
(@) (b)

Figure 4: Distribution of Cycle Length for all 2'° Starting Points

In order to investigate whether the cyclic properties of involution s-boxes affect the cyclic
properties of the SPN, we measured the cycle distribution for 100,000 16-bit SPNs with 4-rounds.
Each SPN uses four 4 x 4 random involution s-boxes with zero fixed points, nonlinearity greater
than or equal to 4 and maximum XOR table entry equal to 4. The cycle length distribution is
shown in Figure 4(a) (the dark line shows the average distribution over 100 adjacent points).
In this case, the average cycle length over all SPNs is equal to 32779. We performed the same
experiment on 100,000 SPNs using random bijective mappings with the same constraints on the
nonlinearity and the XOR table. The simulation results are shown in Figure 4(b). The average
cycle length over all SPNs is equal to 32766. It is clear that the two distributions are almost
indistinguishable. This suggests that the involution s-boxes do not have a negative impact on
the cyclic properties of the SPN.
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7. Key Scheduling Algorithm

In our discussion, we assume that the SPN is keyed by XORing the key bits before each substi-
tution and after the last substitution. A weak key, kw, is any key for which Ey, (E, (p)) = p
for every plaintext vector p where Ey,,(-) denotes the encryption operation using the key kyy. In
this section we propose a simple key scheduling algorithm for the SPN. Three design principles
were employed:

(i) Prevent weak keys.

(i) Given that some or all of the key bits at round r are compromised, it is hard to get any
information about the other round keys. ,

Although the above key scheduling can be controlled to be relatively slow in order to make brute
force attack harder [20], it is far easier and more effective to use a larger key. Using a larger key
has the advantage that it does not penalize implementations which must change the key often.
In the following algorithm key denotes the user supplied key which is assumed to be of the same
length as the block length of the SPN, £} (p) denotes the output of the SPN when it has p as an
input, and the round keys are all set to k. Consider the key scheduling algorithm shown below.

zg = 0;
for t=1 to (R+1)
{
ki = Efgy(zio1);
zi = Op(zi-1);
¥

Figure 5: Key Scheduling Algorithms

One can assign any other arbitrary value to zo. Op(-) denotes any simple operation that
guarantees that all z;’s are different. By noting that E; is a bijective mapping for any fixed key
then all k;’s will be different which guarantees that we do not have any weak keys. An example
of operation Op(-) is the complementing of different bits in z for each i. Note that we control
the key scheduling speed by controlling the number of rounds used in the encryption operation
E7. Also, this scheme is similar to the scheme proposed in [11].

It is also worth noting that the above keying scheme does not have the complementation property;
this property makes DES susceptible to exhaustive key search of 255 rather than 256. This scheme
also ensures that there are no simply related keys which leads to Biham’s related keys attack [2].

The key scheduling described above can be extended to accommodate the case where the user
supplied key size is a multiple of the SPN block length (Keys which are not multiples can be
padded to be so) .

Performance

While the usefulness of a cryptographic algorithm is based on assumptions about its security, the
complexity of the cryptographic function is another feature that should not be overlooked. Table 1
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shows the relative speed of Q-CAST! and SPNs on three platforms: an 8-bit microcontroller
(Motorola 6811), a SUN SPARC workstation and a SUN ULTRA workstation. All algorithms
operate on a 64-bit blocks and implemented 16 rounds.

In considering these numbers, one should take into account that the proposed SPN is a hardware
oriented cipher (while Q-CAST is a software oriented cipher), and the round function of the
proposed SPN provides a better degree of security than the round function of Q-CAST.

SPN Q-CAST
Motorola 6811 |1 0.46
SUN SPARC-20 | 1 7.5
SUN ULTRA-1 |1 1.56

Table 1 Relative Speed of the proposed SPN and Q-CAST

9. Conclusion

We have presented a special class of SPNs that have the advantage that the same network
can be used to perform both the encryption and the decryption operation. The s-boxes used
are involution mappings and the permutation layer is replaced by an efficient involution linear
transformation layer. In a few seconds on a SPARC-20 workstation, we were able to obtain tens
of 8 x 8 involution s-boxes with nonlinearity of 98 and maximum XOR table entry of 10. Using
these s-boxes, an 8 round 64-bit SPN that utilizes the proposed linear transformation will be
resistant to both the basic linear cryptanalysis and to the differential cryptanalysis based on the
best (R — 1)-round characteristic. We also confirmed that the avalanche characteristics and the
cyclic properties of this special class of SPNs reveal no apparent weakness. A key scheduling
algorithm which satisfies certain design principles was also proposed.
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Appendix

Proof of Lemma 2.3: An involution function can only have an even number of fixed points.
There are (g:) , 0 <1 <271 ways to specify any of these 2: fixed points. Note also that an

involution function with 27 fixed points must have 2"~! — ¢ cycles of length 2. An involution
function is completely defined by specifying its fixed points and a single point on each of its
or—1 _ i cycles. Now, we will count the number of ways of assigning these 2" — 2: points
along the 2"~ — 7 cycles. To choose the first point, pick any arbitrary point zo € Zj such
that zo is not equal to any of the assigned fixed points. Choose a random value ro € Z3 for
m(zo). ro should not be equal to any of the fixed points. It also should not be equal to zg. Thus
there are (2" — 2¢ — 1) ways to choose rg. To choose a second point, pick another arbitrary
point z1 such that 7 (z1) has not been assigned yet (this also ensures that it belongs to a new
distinct cycle) and pick a random r; € Z% for w(z1). Again, r1 should satisfy the following
conditions: r; # z; and it should not be equal to any of the previously assigned values for
7. Proceeding as above, we have

on=t_g-1 .
‘ , (2" — 21)!
I @ -2-1-2)= T (28)
7=0 : :

ways of assigning these points. Hence, the number of involution functions is given by

on 211 o 2" —i—1
n . .
<2n>+ > (ZJ I @ -2i-1-2j
1=0 7=0
zn—l

_ 2" (2" — 2i)!
B Z (22) (27T =)l 22771 | (29)

1=

27‘/,—1

b
2 (2n=T — )l (23)1 22"~

=0

The first term in the equation above stands for the unity bijection mapping with 2" fixed points| ]

Proof of Lemma 2.5: The number of bijective mappings with exactly ¢ fixed points is given by
(this result follows by using the inclusion-exclusion principle )

i (—U’“(i) (2:> (2" —i)! . 30)

1=t

The probability of having exactly ¢ fixed points is given by the above formula divided by 2"!.

Hence, the expected number of fixed points is given by
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2 2 (1)) (F)(2n 0!
5 %)

1=t

S

t=0 1=t

gn  9n —1)1,+tt
t=0 =0
zn

T

1=0

@31)

The last step in the equation above follows by noting that

: t By _ (-1 =1,
Z(—l) t <t> - {0 otherwise. (32)

=0
which completes the proof of the lemma. ]
Proof of Lemma 2.6:
From the proof of Lemma 2.3, the number of involution functions with 2: fixed points is given by
27|
(2n—1 — )1 (24)! 227 =07

0<i<or (33)

The probability of randomly selecting an involution function with 2: fixed points is obtained by
dividing (33) by the total number of involution functions. Thus, the expected number of fixed
points for a random involution function is given by

2n-1 211—1
2" 2 2 2
?A_:O 1) (20) 2T Z @ —z)'z(m)'
on—1 = 211-—-1 (34)
2n!
z; (2n—1—g)! (24)t 221 E @17 (20)! —z)' (29)!
which completes the proof of the lemma. ]
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Abstract

A systematic approach to the design of sequence generators is pro-
posed using a new class of boolean functions, the so-called kth-order
§27i- distant functions, which are obtained through nonlinear opera-
tions on a unique m-sequence. No restrictions are imposed on either
the length L of the maximal-length LFSR or the order k of the nonlin-
ear function. The linear complexity of the kth-order §27/-distant func-
tion sequences is guaranteed to be at least (i), that is to say, all the
cosets with binary weight k are nondegenerate. A simple constructing
method for 627i-distant functions is derived as well as its application
gives rise to a wide class of filter functions with a large lower bound on
the linear complexity of the output sequences. Finally, these conditions
are compatible with those found in the open literature which ensure
cryptographic security against correlation attacks.
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1 Introduction

Most common sequence generators in stream cipher systems are based on a
combination of LFSRs and nonlinear functions. Depending on whether the
keystream involves one or more than one LFSR, the sequence generators are
commonly classified into filter generators and combination generators. In both
cases the linear complexity is a measure of the suitability of a keystream for its
cryptographic application. In fact, the linear complexity of sequences obtained
from a nonlinear combination of LFSR-sequences is mostly predictable. Such
is the case of many well-known generators proposals [10] (e.g. clock-controlled
generators, alternating step generators, cascade generators, etc.) whose lin-
ear complexity is either linear or exponential in the number of storage cells
employed.

On the other hand, the linear complexity of the filter generators depends
exclusively on the particular form of the filter and the LFSR minimal poly-
nomial. Generally speaking, there is no systematic method to predict the
resulting complexity. This is the reason why only a few authors have faced the
problem of the determination of the linear complexity for filter generators. At
any rate, several fundamental contributions must be quoted.

Groth [3] concentrated in the use of 2nd-order products and presented the
linear complexity as a controllable parameter which increases with the order of
the nonlinear function. Nevertheless, any reference to the degeneracies which
may occur in the linear complexity of the resulting sequence is completely
omitted.

Kumar and Scholtz [5] derived a general lower bound for the class of bent
sequences, although the LFSR length is restricted to be a multiple of 4. Ruep-
pel [9] obtained a quite large lower bound on the linear complexity of nonlin-
early filtered m-sequences when a linear combination of products of equidistant
phases is applied to the LFSR stages.

Most recent works on this subject, [7] and [8], have focussed on the use
of the Discrete Fourier Transform Technique to analyze the linear complex-
ity. The former applies the DFT technique to the case of 2nd-order products

OThis work was supported by the R&D Program TIC95-0080.
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exclusively while the latter derives a new way of the Rueppel’s root presence
test which can be applied to the case of ‘regular shifts’. Finally, Fuster and
Caballero [1] based on the concept of fixed-distance coset to obtain a gen-
eral lower bound for any arbitrary nonlinear function with a unique term of
maximum order.

The present work is concerned with the problem of the determination of
the linear complexity for filter functions. Three different steps can be pointed
out. First, a new class of nonlinear filter functions, the so-called kth-order
627i-distant functions, has been introduced. These functions are based on the
product of k m-sequence phases which are separated by varying distances.
Second, the linear complexity of such functions has been analyzed as well as a
large lower bound on the linear complexity of the resulting sequences has been
derived. Lastly, a simple method for constructing §2"s-distant functions has
been developed. Such a method enables us to express the §27i-distant phases
in terms of L consecutive phases of the m-sequence. As the characterization
of the 6277-distant functions affects the maximum order terms exclusively, a
wide class of filter functions with a guaranteed large linear complexity can
be derived. Moreover, this characterization is clearly compatible with the
conditions described in [2] which prevent the nonlinear filter generators from
- several] correlation attacks (inversion attacks, conditional correlation attacks,
fast correlation attacks).

The paper is organized as follows. Section 2 introduces some definitions
and basic concepts that are needed in the work. In section 3, the main results
concerning the linear complexity of the resulting sequences are presented. Sec-
tion 4 describes a method for constructing the above mentioned functions.
Finally, conclusions in section 5 end the work.

2 Basic Concepts and Definitions

A few basic concepts and definitions, which will be used in the sequel, can be
introduced as follows. .

S is the output sequence of an LFSR whose minimal polynomial ms(z) €
GF(2)[z] is primitive. '
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L is the length of the LFSR.

a € GF(2L) is one root of m,(z) as well as a primitive element.

f denotes the unique maximum order term of a nonlinear kth-order function
applied to the LFSR’s stages. That is, f is the product of k distinct phases
of 8, f = SnttoSntt---Sntty_,, Where the symbols ¢; (j=0,1,....k-1) are integers
verifying 0 <tg < #; < ... < tp_y < 2L — 1.

The root presence test for the product of distinct phases of a m-sequence
can be stated as follows, [9]:

of € GF(2L) is a root of the minimal polynomial of the generated sequence
if and only if :

C(t02"0 atl 2¢0 atk_l 2¢0
ato2el atl 2€1 atk_l 2°1
Ag = %0
atogek—l atl 2¢k—1 atk—lzek—l

Here o € GF(2F) (j=0,1,..,k-1) correspond respectively to the k phases
(8n4t,) of the m-sequence. E, the representative element of the cyclotomic coset
E, is a positive integer of the form £ = 2% 42° 4. 42%-1 with the e; (i=0,1,...,
k-1) all different running in the interval [0,L). Under these conditions, af
and its conjugate roots contribute to the linear complexity of the nonlinearly
filtered sequence. The value of this contribution is equal to the number of
elements in such a cyclotomic coset.

Definition 1

The cyclotomic coset E is degenerate if the corresponding determinant Ag
equals zero.

Next, we introduce a new class of nonlinear functions, the so-called §277-
distant functions, which constitute the starting point of this work.

Definition 2 :

We will call kth-order product of §27-distant phases to any product of k
distinct phases {s,1427 }j=0,1,...k-1 Of a m-sequence, where § and r; are integers
such that § <2 — 2 and 0 < r; < L-1. That is, a kth-order product of §27-
distant phases is a nonlinear function of the form

Sn+4+6270 * Snt62r1 * Snts2m2 7t SppsaTh-1.

151




Definition 3

A function with a unique term which is a k-th order 627i-distant product
will be called a kth-order 6277-distant function and denoted by fs.

Note that, according to the previous definitions, any arbitrary nonlinear
function of order k’ (k’ < k-1) can be added to f5 without affecting its condition
of §2"i-distant function. In this work, only the contribution of the kth-order
627i-distant products to the linear complexity of the resulting sequence will be
studied.

As the construction of 627/-distant functions involves the computation of a
normal basis, the following result [6] addresses this subject.

Theorem 1

For 8 € GF(2Y), {8, 8% 8%, 8%, ..., 62 '} is a normal basis of GF(21) over
GF(2) if and only if the polynomials xZ-1 and Sz~ + g2zL~24+... 4+ 82 "z +
B in GF(25)[x] are relatively prime.

The above criterion leads to a relatively simple way of checking whether a
given element of a finite field gives rise to a normal basis.

3 Main Results

First of all, the following result guarantees that the order of a product of k
627i-distant phases is actually k.

Lemma 1

Let f be the kth-order product of 6277-distant phases of a m-sequence. Then
f is a kth-order function if and only if the powers o270, af2™ ... of2™*
linearly independent over GF(2).

Sketch of Proof The result follows inmediately from the fact that [4]

k=1 iy
any %" verifies that o®*" = Y= d;a%?”, d; € GF(2) if and only if f can be
J=0

, are

s
WIItten as Spisa70 Sn46271 * ° * Spts2m * ¢ Sp4s2™h—2 Spps2Tk~1 = Spts270 Snysor C
k-1 .
_ZO d;8py5275 ** * Snasamk—2 Sppsomk—1. Lhus, if the powers @27 (j=0,1,...,k-1) were
J:
il
linearly dependent over GF(2), then f would be either a (k-1)th-order function

152




or the identically zero function. Reciprocally, if f were not a kth-order function
then the powers a2’ (j=0,1,...,k-1) should be linearly dependent over GF(2). a

An easy way to guarantee the condition of lemma 1 is to take & such that
{of, 0% % &% ... a®® 7} is a normal basis of GF(2F) over GF(2).

Next result seems to be a direct application of the root presence test to the
specific functions we are dealing with.

Lemma 2
Let fs be a kth-order 6277-distant function. If o®?, of2, ... 2% (<
€0 < €1 < -+ < g1 < L are linearly independent over GF(2), then the

cyclotomic coset E of the form E=2% + 21 ... 4 2%-1 is nondegenerate.
Sketch of Proof Now the determinant Ag can be written as follows

T 9€ 71 € Thk—19e
052020 0152120 - e 0152 20
T0 0C 71 9¢€ Tke19e
352021 :62121 S j52 221
AE -
70 9%k—1 T19%k—1 Tkl 9%k —
a‘” 2 C¥52 12 .. (162 27k

According to lemma 1 the columns of Ag are guaranteed to be linearly inde-
pendent. Moreover, according to the hypothesis of lemma 2 the rows of Ag
are guaranteed to be linearly independent. Thus, both facts guarantee the
nondegeneration of coset E. I

The two previous lemmas lead to the main result.

Theorem 2

Let f5 be a kth-order §27/-distant function. Then all the cyclotomic cosets E
with binary weight k are nondegenerate if and only if every subset of k elements
taken from { of, a®?, ---,a®2""" } is linearly independent over GF (2).

Sketch of Proof ‘=’ We proceed by contradiction. In fact, let
{0®*"};201.... k-1 be a subset of {e?, o2, .-, a‘52L-1} linearly dependent over

GF(2). That is, there exist coefficients ¢; € GF(2), j=0,1,...,k-1 not all zero,
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k=1 e )
such that 3 ¢;a’?” = 0. Consequently the determinant Ag equals zero

7=0
70 D¢ 1 9€, Tk—19eg
a52 02°0 a52 12¢€0 L a62 2
a&zfo 2¢1 a&zrl 2°1 L a&zrk—l 2¢1
Ag = =0
70 9€k—1 719k —1 Thk—19% =1
0{62 02 a52 12 L 0[62 2

as its rows are linearly dependent. Thus, there is a cyclotomic coset E=2% +
28t 4 ...+ 2%-1 degenerate which contradicts the starting hypothesis.
‘<’ It follows immediately from lemma 2. &

Now a lower bound on the linear complexity can be easily derived.
Corollary 1

Let { of, o2, ---, 0" } be a normal basis of GF(2F) over GF(2). Then

the linear complexity of any kth-order 627i-distant function is lowerbounded

by
: L
> .

Sketch of Proof If { of, a2, ---,a®®"™ } is a normal basis of GF(2%)
over GF(2), then every subset of k elements taken from { o®, &2, - - -, o™

} is linearly independent over GF(2), and from theorem 2 all the cyclotomic
cosets E with binary weight k are nondegenerate. 1

;From a numerical point of view this lower bound is equal to that valid for
the product of equidistant phases of a m-sequence, [9]. On the other hand, it
is the greatest possible contribution due to the cosets whose binary weight k
equals the order of the function.

Clearly, if a kth-order product of §27i-distant phases is added to any arbi-
trary nonlinear function of order less than k, then the linear complexity of the
resulting sequence will be guaranteed to be at least A > 1,;’) Nevertheless,
this result would be based exclusively on a single kth-order product whose

influence on the generated sequence is not very remarkable. This is why in
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practice the hypothesis are relaxed by introducing more than one maximum
order term although the lower bound obtained can take a slightly lower value.
Theorem 3
Let { o, a®?, ---,a®" ™" } be a normal basis of GF(2F) over GF(2). Then
the linear complexity of a filter function whose maximum order term is a linear
combination of kth-order products of §27-distant phases,

N~-1
Z biSnti46270 * Snits21 * Snbitbars * * Spayigs2mke1,
=0

is lowerbounded by v
2 (B) -,

where N is a positive integer and the coefficients b; are not all zero.

Sketch of Proof The sequence generated by a filter function can be
written in terms of the roots of its minimal polynomial. In fact, the contri-
bution to the coefficient of the root of due to the term Sn4it6270 ° Sppitsor -
Sn+i48272 ** * Spripsak-1 1S the determinant (Ag); = o*F-Ag. The general form

N-1
of such a coefficient for a function defined as before is 3 b;0*f Ag. Accord-

ing to the previous results Ag # 0, thus the coset Ez-\;s?ill be nondegener-
ate if by + b1a® + - - - + by_1(aF)N-1 £ 0 in GF(2L). As the polynomial
bo+biz+---+by_12V"! has at most N-1 roots, we conclude that in the worst
case the lower bound will take the value (I];) —~(N-=1). 1

Note that if N< L and L is a prime number, then o will never be a root
of the previous polynomial as the powers (¢)?, i=0,1,...,L-1 in the expression
of the resulting sequence are always grouped in sets of conjugates.

The addition of a function f’ of order less than k does not affect the obtained
bound, therefore we could choose a nonlinear function of the form

N-1

!
Z biSntit5270 Sntitsan “cc Spyipseme-1 + f (3n75n+17'"75n+L—1)
=0 :
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where ord(f’)<k. In this way, the linear complexity of the resulting sequence is

at least (I,;) — (N —=1). In terms of realization the first part of the function does
not look particularly convenient, since it may involve widely spaced phases
of S, but we can always express any function of any number of phases of S
by an equivalent function of L consecutive phases. In the following section an
algorithm that allows find out easily this equivalent in the case of the functions
we are dealing with is presented.

Example

Consider L= 4 and k= 3. The possible products of §2"i-distant phases are:
Sn+15n+25n+4; Sn+1Sn+25n+8) Sn+1Sn+4Sn+8; Sn425n4+48n48y +vy Sn+145n4285n+56=
Sn+118n+138n+145  Sn+14Sn4+28  Snt112= Sn47Sn+138n+14y Sn+145n456Sn+112—
Sn+75n+118n+14 and Sn4283n+56Sn+112= Sn4+7Sn+115n+13- FiI‘St, the pI'OdUCtS with
§ € {5,10 } are thrown away since they correspond to 2nd-order functions.
JFrom lemma 1, and depending on the particular LFSR, some of the re-
maining products will be of order 3 while other products will not be so.
For a particular minimal polynomial, e.g. z* + z® + 1, the following sets
of powers of « are linearly independent over GF(2), {a,a?, a*}, {a,a?, o®},
{a, 0%, a®}, {a?,a, 08}, ..., {a”, e, a'®}. We have made use of the fact that
{a,0?, 0%, 0%} and {c?,a®, a'?, a®} are normal basis of GF(2*) over GF(2) to
guarantee the order of 8 of these products. The 4 remaining products also
have their orders guaranteed because the corresponding sets {a”,al* a3},
{a”,a't, o}, {a, o', o’} and {aM,a'®, o'} are linearly independent over
GF(2). Consequently, all the results proved in this section can be applied to
any of the 3rd-order products of §27i-distant phases. :

4 Method for computing products of 627-dis-
tant phases

An algorithm to construct a product of 6277-distant phases in terms of L con-
secutive phases of the m-sequence S is presented.

INPUT: Order of the function k and exponents of a minimal polynomial of
degree L (eo, €1,...,L).
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STEP 1.- Construct the elements «fi], i=0,1,...,L-1 as (L+1)-bit strings
with a unique 1 situated at the position i+1. Construct the element control
as a (L+1)-bit string with a unique 1 situated at the position L+1. Construct
the element o[L] as a (L+1)-bit string with the 1s situated at the positions
e;+1, Ve; 75 L.

ST;EP 2.- Compute a normal basis of GF(2L) over GF(2), {¢?, o2, - -
o2 7Y,

STEP 3.- Compute M=max[2(L-1), é]. Obtain successively the elements
afj], j=L+1,L+2,...,M, in the following way:

a) ofj]=alj-1]<<1,

b) if «fj] AND control = control, then afj]= «fj] XOR control XOR «fL].

STEP 4.- Find out the least jo such that §2% > M+1. For k=0,1,...,jo-1
alk] = a[62F]. Compute ap[k], k=jo, 1,...,L-1, as follows:

a)Initialize ap[k]=0,

b)For 1=0,1,...,L-1, if the lth-bit of ap[k-1] is 1 then ap[k]= ap[k] XOR
af21].

STEP 5.- Use the L least significant bits of ap[j], j=0,1,..., L-1, to express
the element s, ;57 as a linear combination of the L elements sy, ..., Sp11_1.

STEP 6.- Obtain the product s,ts2m0 Spts2m * * * Sppsame—t in terms of s,, ...

9

Sn4-L—-1-

OUTPUT: Expression of a kth-order product of §2™-distant phases s,1s27
Spts2r1 ot Spysome—1 1N terms of Sy, ..., Spyr_1.

Note: All the positions are considered from right to left.

Example:

Consider L=4, 2L-1=15, k=3, 2* + 23 + 1 and (o, €1,4)=(0,3,4). We
construct o[0]= 00001, ofl]= 00010, a[2]= 00100, «[3]= 01000, control[4]=
10000, «f[4]= 01001. A normal basis of GF(2*) over GF(2) is {a®,a%,a'?,a°}.
M= max(6,3)= 6, «[5]= 10010 XOR 10000 XOR 01001= 01011, «[6]= 01111,
ap[2]= 00000 XOR 00001 XOR 00100 XOR 01001 XOR 01111= 00011. So
Sn+6= Snt Snt1t Sni2t Spes and Spi12= Sp+ Spy1, and then the product
Sn+35n+65n+12 Temains of the form s,8,1+98,43+ Snt1 SneoSnys. After similar cal-
culations, we obtain the expressions of every 3rd-order product of §27-distant
phases in terms of s,, Sp41, Snye and s,4a:
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Sn+15n+28n+4 = SnSn+1Sn+2 + Sn+18n+25n+3)

Sn+15n428n4+8 = Sn+15n425n+3, ,

Snt1Sn+4Sn+8 = SnSn+1 T SnSn+1Sn+2 + SnSnt18n4+3 T Snt15n425n43,

Sn+25n+45n+8 = SnSn+2 T SnSnt1Sn+2 T SnSnt+25n+3 T Snt15n428n43,

Sn+38n46Sn+12 = SnSn425n43 + Sn4+15n+25n43,

Sn+38n+65n+9 = SnSn+15n+3 T Snt1Sn+25n+3,

Sn+35n+95n+12 = SnSn+3 T SnSn+18n+3 T SnSn425043 + Snt15n4+25n+3,

Sn465n+95n+12 = Sn T SnSn41 + SnSnt2 T 8nSn43 + SnSnt15n42 T SnSnt+15n+3 +
SnSn+28n+3 + 5n+13n+23n+3) v

Sn+7S5n+135n+14 = Snt2tSnSnt2FtSnt18n42+Sn+18043+5n4+28n43+5nSnt1Sn+2+
SnSn+1Sn+3 + SnSn+25n+3,

Sn+7Sn+118n+14 = Sn+2+SnSnt2tSnt18n+2+Snt18n13+Sn4+28n43+SnSnt15n42+
SnSn4+18n+3 + SnSn4+25n+3,

Snt78n+118n+13 = Sn42+SnSnt2FSnt18n+2FSnt1804+3+F 8425043+ S0 Snt1Sn+2+
SnSn+15n+3 T SnSn+25n+3,

Sn+118n+135n+14 = Snt2tSnSnt+2tSnt19n42+Sn4+18n+3+5n425n+3+SnSnt1Sns2+

SnSn+15n+3 + SnSn428n43-

5 Conclusions

In this paper a new class of nonlinear filter functions (the so-called kth-order
627i-distant functions) has been defined. A lower bound on the linear complex-
ity of the resulting sequences has also been derived. This lower bound of value
(i), the greatest possible contribution due to the cosets with binary weight k,
is only comparable to that valid for the product of equidistant phases. The
work concludes with a method for constructing kth-order §277-distant functions
that enables us to obtain a wide class of filter functions with a guaranteed large
minimum linear complexity.

The design criteria are easily compatible with those given in the literature
to prevent correlation attacks. In this way, the method here presented provides
a new class of sequence generators which satisfy the standard cryptographic
requirements of long period, large linear complexity and correlation immunity.
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