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Abstract

In this talk we introduce a system called Crowds for protecting
users’ anonymity on the world-wide-web. Crowds, named for the no-
tion of “blending into a crowd”, operates by grouping users into a
large and geographically diverse group (crowd) that collectively issues
requests on behalf of its members. Web servers are unable to learn the
true source of a request because it is equally likely to have originated
from any member of the crowd, and indeed collaborating crowd mem-
bers cannot distinguish the originator of a request from a member who
is merely forwarding the request on behalf of another. We describe
the design, implementation, security, performance, and scalability of
our system. Our security analysis introduces degrees of anonymity as
an important tool for describing and proving anonymity properties.
(Joint work with Mike Reiter.) '

Seehttp://www.cs.nyu.edu/"rubin/crowds.ps.gzfor a copy of the
technical report or visit the Crowds home page at
http://www.research.att.com/projects/crowds/.
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ABSTRACT. The strength of various cryptosystems depends substantially on the prop-
erties of elements they consist of. Substitution blocks are often used as nonlinear
transformations in both stream ciphers, block ciphers and one-way hash functions.
One of the most important properties of substitution blocks is their ability to trans-
form small changes of input into large output changes, which is measured by the Strict
Avalanche Criterion, the SAC. We present a flexible method for construction of large
substitution blocks from smaller ones, preserving the SAC-property and discuss the
other cryptographically important properties of resulting substitution blocks as regu-
larity, nonlinearity and the robustness against the linear cryptanalysis.

1. Introduction

The strength of various cryptosystems depends substantially on the properties of
elements they consist of. Substitution blocks are often used as nonlinear transforma-
tions in stream ciphers, block ciphers and one-way hash functions. There are sveral
methods how to construct cryptographically strong S-boxes. Small, regular (n x m)
S-boxes (n > m) with n < 6 can be generated by exhaustive search. Larger, SAC
satisfying S-boxes can be constructed by means of methods presented in [SZZ93a]
or by expanding smaller S-boxes according to [KMI90]. Another approach, intro-
duced in [P91, N93] yields cryptographically strong S-boxes which do not satisfy
SAC. But the resulting S-boxes can be modified by transforming their inputs by a
suitable linear transformation [SZZ93b] into SAC satisfying S-boxes. Both previ-
ous constructions yield large but complex cryptographically strong S-boxes. Youssef
and Tavares [YT96] presented simplier S-blocks, so called Substitution-Permutation
Networks (SPN) with cryptographically good properties. The SPN’s constructed by
their method have very good avalanche characteristics, but do not satisfy the ideal —
SAC.

Using the idea of constructing large S-blocks from smaller ones by proper choise of
basic S-boxes and tranforming their outputs by some controlled tranformations, we
introduce a method of design of regular substitution blocks with high nonlinearity,
satisfying SAC and discuss their resistance against linear cryptanalysis, too.
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2. Preliminaries

The vector space of dimension n over GF(2) is denoted by V;,. The elements
from V,, will be denoted by small letters of greek aplhabet (a,f,...). Since there is
a very natural correspondence between vectors from V,, and numbers from the set
{0,1,...,2" —1}, we will often treat the vectors from V,, as the integers. To avoid the

missunderstandings, we denote by the symbol o(n, j) the vector (¢;,1,...,0j,n) € Vp,
such that .,
i=) 2" o5
k=1 :

The n-ary Boolean function f is mapping from V; to GF(2). The truth table of a
Boolean function f is defined as the vector tt(f) = (f(0), f(1),..., f(2" — 1)). Let
a = (a1,a9,...,am) and B = (b1,bs,...,bs) be two binary vectors of length m. The
operation a @ f denotes bitwise XOR of o and S. The symbol @ itself denotes the
sum modulo 2. The Hamming weight of a vector a, denoted by wt(a), is the number
of ones in a. The n-ary Boolean function f is balanced, if wi(tt(f)) = 2"~1; that is,
the truth table of f contains the same number of ones and zeroes.

Let @, be two vectors in V. Then d(a, ) = wi(a, ) is called the Hamming
distance between o and . Analogically, distance between functions f,g (both de-
pending on the same number of variables) is defined as d(f, g) = d(tt(f), tt(g)).

The Boolean function k : V;, — {0,1} of the form h(z) = ag D ayz1 Dagzs -+ @
GnTn, Where £ = (21,...,2,) and ag,...,a, € {0,1}, is called affine. In particular,
h is linear, if ag = 0.

Since linear cryptosystems can be easily broken, one of the most important crypto-
graphic properties of Boolean functions is nonlinearity. The nonlinearity of a Boolean
function is defined as the (minimal) distance of the function and the set of all affine
functions (we denote the nonlinearity of f by N(f)):

N(f) = min{d(f, k) | h(z) = a0 & @a,-x,-, o, ... ,a, € {0,1}}.

The other important criterion (Strict Avalanche Criterion) was introduced by Web-
ster and Tavares in [WT86]:

Definition 2.1. The Boolean function f : V;, — {0,1} is said to satisfy SAC, if the
function f(z) ® f(z @ a) is balanced, for all a € V,, such that wt(a) = 1.

The SAC is a global criterion. To describe "local” avalanche properties of Boolean
functions, we said, the function f : V;, — {0,1} satisfies propagation criterion with
respect to a vector 4 € V,,, if the function f(z) @ f(z @ v) is balanced.

The substitution box S n x m (n > m) is an m-tuple of Boolean functions
(fiseensfm), fi : Vo = {0,1} Vi =1,...,m. S-box S = (f1,...,fm) satisfies
the SAC, if every f; (: = 1,...,m) satisfies SAC. The S-box S (S : V;, — Vi), is said
to be regular, if

{z € Va|S@) =y} =2

for all y € Vin. The following lemma was proved in [SZZ94] and will be an useful tool
in the next sections. :




Lemma 2.2. Let (fi,...,fm), where each f; is Boolean function on V,, is mapping
from Vi, to V. This mapping is regular if and only if all nonzero linear combinations
of fi,...,fm are balanced. ~ “

Let fo, f1,---, fax_1 be Boolean functions on Vh. Then concatenation of these
functions is a function g : Va4r — {0,1} defined in the following way:

oz, 9) = @ o7 fo(v),

o€V,

where = (Z1,-++,2k), ¥ = (Y1,---1Yn), T° = 2{'zg? ..zt (0= (01,---,0%))
and .
{E{, if o; =0;

wqi = .
zi, f o; = 1.
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The truth table of the function g can be obtained by concatenation of truth tables
of functions fo, fi,..., far—1: tt(g) = (tt(fO)att(fl)a ooy tt(for—1))-

The following lemma provide us with a useful lower bound on the nonlinearity of
concatenation of Boolean functions.

Lemma 2.3. Let fo, fi,...,fox—; be Boolean functions defined on V,. Let
N* = min{N(f;) |7 =0,1,... ,2F —1}. Let g be concatenation of these functions.
Then N(g) > 2¥N*.

Proof. (by contradiction)

Let N(g) < 2¥N*. Then there exists an affine function h(z,y) = a1z1 @ -+ @
arzr © biyr @ -+ @ bpyn O ¢, where £ = (T1,...,2k), ¥ = (y1,---,Yn), such that
d(g,h) < 2¥N*. Let us split function h into 2k parts ho, h1,..-,hai—g : Vo — {0,1},
such that

hi(y) = Pbivi@dj,
i=1

where d; = ¢ ® a10j,1 @ a205,2 ® - -- © ax 0k ((Gj15.2>05k) = o(j,k)). Then there
must exist an integer I (0 < I < 2% — 1), such that d(fi, h) < N*. Since h; is affine
function, we have N(fi{) < N* — a contradiction. U

Linear cryptanalysis ([M93]) is a powerful method to attack various kinds of cryp-
tosystems. It is based on approximation of outputs of S-boxes by linear (or affine)
functions. To achieve immunity against linear cryptanalysis it is sufficient to use
(construct) S-boxes with high nonlinearity of every nonzero linear combination of
their functions — see [SZZ93a).

3. General construction

The main idea of our construction is to split the input vector into two parts —
one of them is used as input variables of an S-box S; while the other controls a
transformation T, modifying the output of the S-box. The elementary building block
(EBB) is depicted in figure 1.




input variables

_control

variables data

output variables

Figure 1: Elementary building block

There are many ways how to interconnect these elementary blocks into a network.
Since the cryptographic properties of resulting network are substantially influenced
by the depicted transformation, we concentrate our attention on transformations, the
use of which results in cryptographically strong networks, namely permutations and
inversions (inversion of a Boolean function f(z) is the Boolean function f(z) @ 1).

4. Permutations

The input variables of the EBB B are (z1,..., ) — control variables and (y1,. . ., ¥n)
— data. B (cf. figure 1) consists of regular n x m S-box S satisfying SAC. Let us
suppose S = (g1,...,9gm) such that g; : V, — {0,1} for i = 1,...,m. To abbreviate
the notation we denote the input vectors (zy,...,zx) and (y1,. . .,y») by the symbols
z,y respectively. The output of S-box S, a vector (g1(y),- -, gm(y)), is permuted by
a permutation P. The permutation P depends on control variables z (and there-
fore will be denoted by P,). P is an m-bit permutation, transforming the vector
(g1 (y), -»9m(y))- The m-ary output of P, is a vector (G1(z,y),. .., Gm(z,y)) where
-, Gm are mappings from V,1x to {0,1}:

(Gl(xa y)a R Gm(ma y)) = Pz(gl(y)a ve 7gm(y))'

Let permutation P be fixed, that is — P does not depend on z1,...,z. Without
loss of generahty we can assume that P is identity. Then G;(z, y) = gz(y), for all
¢ = 1,...,m. Since g; satisfies SAC, G;(z,y) satisfies propagation criterion with




respect to all vectors v = (0,), where 0 € Vi, a € V, A wi(a) = 1. A problem
appears for vectors v = (§,0), where 0 € V,,, B € Vi Awt(B) = 1:

Gi(z,y) ® Gi(z @ B,y @ 0) = gi(y) ® 9:(y) = 0,
what is the worst case from the ”avalanche” point of view. Let us look at the following
example:
Ezample 4.1. Let g1,92,93 are functions of 3 x 3 regular S-box satisfying SAC. Let

the truth table of a function G be obtained by concatenation of these functions:

G = (91,92,93,91,92, 93,91, 92)-

Function G depends on 6 variables. It is not hard to verify, that G satisfies SAC,
too. There are 6 vectors of Hamming weight 1. In 3 cases (for v € {(000001), (000010),
(000100)}) G satisfies the Strict Avalanche Criterion with respect to vector v (this
follows directly from the fact that S-box satisfies SAC). The remaining vectors are
analyzed bellow:

a) Let v = (001000). Then

G(z)®G(z @ (001000)) =
(91,92, 93,91, 92,93, 91,92) D (92, 91,91, 93,93, 92,92, 91) =
(91 @ 92,92 D 91,93 D 91,91 D 93,92 D 93,93 B 92,91 D 92,92 D g1)
b) Let v = (010000). Then

G(z)®G(z @ (010000)) = o
(91 ® 93,92 D 91,93 P 91,91 D 92,92 P 91,93 D 92,91 D 92,92 D g3)

c) Let v = (100000). Then

G(z)®G(z @ (100000)) =
(91 @ 92,92 D 93,93 D 91,91 D 92,92 D 91,93 D 92,91 D 93,92 D g1)

Since the S-box is regular, every function g; @ ¢g; (V1 < ¢ <'j < 3) is balanced
(Lemma 2.2) and therefore the functions G(z) @ G(z @ ) are balanced, too.

Our elementary building block (with controlled permutation — cf. figure 1) exactly
concatenation of functions of S-box S. We are interesting in such concatenations,
which preserve SAC (just like in the example above).

Definition 4.2. Let 7 : Vy — {1,2,...,m}. This mapping is SAC-preserving, if
andonlyifVae Vy Vz eV

wi{a) =1 = n(z) # 7(z & a).

Following lemma extends previous example.




Lemma 4.3. Let S = (g1,...,9m) be a regular n x m S-box satisfying SAC (that
is, Vi=1,...,m: g; satisfies SAC). Let « : V}; — {1,2,...,m} be SAC-preserving
mapping. Then the function G defined by

G(z7 y) = @ z? gw(a)(y)

o€V
satisfies SAC.

Proof. Let us consider two cases:
a) Let y=(0,a), a€V,Awt(a)=1, 0€ Vi. Then

G(z,y) ®G((z,9) ®7) = G(z,) 8 G(z 80,y D o) =
= @ (xo g‘tr(o)(y) @z g?r(u')(y @ Ol)) -

o€V
= P 27 (Ge(0)¥) @ (e (y @ Q)). (4.1)
o€V
Since g; (i = 1,...,m) satisfies SAC, Boolean function (4.1) is concatenation of 2F

balanced Boolean functions. Therefore G satisfies propagation criterion with respect
to all above vectors .

b) Let v = ($,0), B € ViAwt(B)=1, 0€ V,. Then
G(z,y) @ G((z,y) ®7) =G(z,y) Gz © B,y ®0) =
= @ (ma gﬂ(a)(y) & ((L‘ @ :B)a g‘tr(a)(y)) =

o€V

= P = 9a0)(¥) B 2° gn(oeny(¥)) =
o€V,

B 27 (9re)(¥) @ 9rto0m)(®)): 42)
o€V,

Il

We already know that S-box S is regular. Hence, all functions gi®g; (V1 <i <y <
m) are balanced. Since mapping 7 is SAC-preserving and wt(8) = 1, n(0) # n(c@®B).
Therefore Boolean function (4.2) is (again) concatenation of 2% balanced Boolean
functions and thus G satisfies SAC. 0O

Recall our goal: to create controlled permutation P such that resulting substi-
tution block satisfies SAC. Lemma 4.3 did the first step toward the solution. Now
we need to transform input functions ¢y, ..., ¢n into output functions Gy,...,Gn
in such a way, that we save the regularity and avalanche property of the S-box.
So the same SAC-preserving mapping can be used only once. But how to create
SAC-preserving functions? The following lemma provide us the instructions.

Lemma 4.4. Let 7 : Vi — {1,...,m} be SAC-preserving mapping. Let =’ be a
permutation on the set {1,...,m} defined in following way:

7'(z) = (7(z) mod m) + 1.




Then =’ is SAC-preserving mapping.

Proof. Let us consider mapping b : {1,...,m} — {1,...,m}; h(z) = (z mod m)+1.
Since h is a permutation on the set {1,...,m}, for each z,a € Vi, such that n(z) #
m(z @ ), h(n(z)) # h(x(z ® a)), too. Since 7'(z) = h(n(z)), the lemma follows. O

Some serious questions remain open, namely whether SAC-preserving mappings
exist for arbitrary number of variables, whether it is possible to generate them effi-
ciently and finally, how many of SAC-preserving functions can be found.

Definition 4.5. Let Axm : Vi — {1,2,...,m} is defined by
Ak,m(z) = (z mod m) + 1,

where + denotes arithmetical addition. Then A is called natural cyclical map-
ping.

Lemma 4.6. Let m > 2 and m {2*~! (m is not a divisor of 2F71) and let Ag,m be
natural cyclical mapping. Then Ay n, is SAC-preserving mapping.

Proof. (by contradiction) :

Let @ = (0...010...0) € Vi (1 is - th element from the left; ¢ € {1,...,k}) is
vector for which 3 « € Vi : Ag m(2) = Ag,m(z @ a). Then (since /\k,m is cychcal) the
following equalities hold:

Ak,m(0) = Ak,m(@);
1=(2"" mod m)+1;
25=% = 0 (mod m).

Hence, m | 2¥~%. But i is an integer from the set {1,2,...,k}. The obtained contra-
diction proves the proposition of our Lemma. [

Corollary 4.7. For k > 2 there is at least

m
> (7)
2<r<m r

r ’f 2k—1

SAC-preserving mappings from Vi to {1,2,...,m}.

Proof. Let A, be a natural cyclical mapping and r { 27!, Then, by Lemma 4.6,
Ak,r is also SAC-preserving mapping. We can define followmg mapping )\(”"""') :
Vi — {t1,...,%r}, by:

)\g’lrw-:lr)(x) = 7’(:!: mod r)+1,
where 21,...,i, are distinct elements from the set {1,...,m}. Clearly, /\g,lr""’i’) is
also SAC-preserving mapping. We can choose i1,...,7, in (':) different ways and
their ordering in r! ways. Thus, the corollary follows. 0O




Let us define the binary operation M over the set {1,...,m}. Let a,b € {1,...,m}.
Then aBb=(a+b—-1) mod m + 1.

Now, we shall summarize our construction.
The permutation block is based on the SAC-preserving function # : Vi —
{1,...,m}:
G1(%,Y) = gn(x)m1(y)
G2(2,Y) = Gn(z)m2(¥y)

Gm(xa y) = gﬂ'(z)Bm(y); : | (4:3)

Remark 4.8 It is possible to choose various different ways, how to implement
permutation block to achieve the regularity of the resulting substitution block, too.

SAC and regularity are only two from the set of very important cryptographic
criteria. Impacts of described construction on nonlinearity and resistance against
linear cryptanalysis are summarized in the following theorem.

Theorem 4.9. Let S be regular n x m, SAC-satisfying S-box. Let «# : Vi —
{1,...,m} be SAC-preserving mapping. Let us consider substitution block con-
structed according to (4.3). Let Ny denote minimal nonlinearity from the set of all
gis(1<i<m): :
Ng = minici<m{N(g:)}.

Let Ng be minimal nonlinearity of nonzero linear combinations of g1, g2, ...,gm:

Ny = min{N(@D aig:) | (a1, -,am) € Vin \ {0}}.
=1
Then
(i) Yi=1,...,m: G; satisfies SAC;
(i) constructed substitution block is regular;
(i) Vi=1,...,m: N(G;) > 2FN,; _
(iv) Y (a1,..-,am) € Vi \ {0} : NP, ;G:) > 25N}

Proof.

(i) Each Boolean function Gi(z,y) = gr(z)mi(y) (fori = 1,...,m) can be written in
the form Gi(z,y) = @, cv, 2°In()mi(y). But 7 is SAC-preserving mapping. Then,
by applying (¢ — 1) times Lemma 4.4, the mapping (o) B is also SAC-preserving.
Therefore, by Lemma 4.3, G; satisfies SAC.

(ii) According to Lemma 2.2 it is sufficient to prove the balancedness of each

nonzero linear combination of G’s. Let (a1,...,am) € Vin \ {0}. Then
m m
P a:Gi(z,y) = Pai P ¢ ga(eymily)
=1 =1 o€V
m
= @ z° @ aigw(o)EHi(y)'
ocV; =1




Let us denote P, aign(o)mi(y) by ho(y). The function h,(y) is nonzero linear com-

1=

bination of functions g1, ...,gm. Since S-box S = (g1,--.,9m) is regular, according
to Lemma 2.2, the function h,(y) is balanced. Hence, the function P, aiG; is a
concatenation of 2F balanced functions. Therefore, @:’;1 a;G; is balanced, too.

(iii) We know that G; is concatenation of 2% functions: '

Ir(0)&i(Y)s Ir()Bi(Y)s - - - » Im(2r —1)mi(Y)-
Tt is obvious, that the minimal nonlinearity among these functions is at least N,.
Applying Lemma 2.3, we can conclude: N (gi) > 2N,
(iv) The proof is analogous to the proof of (iii); Dr, a:G; ((a1,...,am) € Vu\{0})
is concatenation of 2¥ functions

m m m
D aigxmi(¥), D aigrymi(y),- - - D aignr —nm:(Y)-
i=1 i=1 =1

Again, we use Lemma 2.3 to obtain our proposition. a

5. Inversions

In this section we study another (but similiar) approach to building SAC-satisfy-
ing substitution block. The basic idea is to replace controlled permutation (used in
previous section) by controlled inversion(s):

Let S be (again) the regular n xm S-box satisfying SAC. I is the block of controlled
inversions — functions G; (i = 1,...,m) are formed with help of them.

Gi(z,y) = gi(y) ® vi(x) i=1,...,m, (5.1)

where = = (21,..-,%k), ¥ = (Y1,---,Yn) and v; : Vi — {0,1}. By suitable selection
of v;’s it is possible (like in Section 4) to guarantee desirable cryptographic properties
of resulting substitution block.

Theorem 5.1. Let S be regular n x m, SAC-satisfying S-box. Let vi : V3 —
{0,1} (i = 1,...,m) be SAC-satisfying functions. Let us consider substitution block
(5.1). Then
(i) (G1,-..,Gm) is regular (n + k) X m S-box;
(ii) Gi,...,Gm satisfy SAC;
(i) V (a1,.--,0m) € Vm \ {0} : N(DL; a:Gi) 2 2*N(DL, aigi)-

Proof.
(i) According to Lemma 2.2 it is sufficient to prove the balancedness of every
nonzero linear combination of Gy, ..., Gm. Let (a1,...,am) € Vi \ {0}. Then

@ a;Gi(z,y) = @ gi(y) & vi(z)
= (@ gi(@/)) @ EB vi(z)

= h(y) P () (52)
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where h(y) = @, ¢i(y). From the regularity of S-box S and Lemma 2.2 it follows
that the function A(y) is balanced. The function (5.2) is concatenation of 2* functions
h(y) or h(y) ® 1 (depending on value of @, vi(z)). Hence, P, a:Gi(z,y) is
balanced.

(i1) There are two cases for each ¢ = 1,...,m:
a) Let v =(a,0) € Vg, a € Vi, wi(a) =1, 0 € V,,. Then

Gi(z,y) © Gi((z,y) @ («,0)) = ¢i(y) © vi(z) ® 9:(y) ® vi(z © @)
= y,-(:l:) & I/,‘(.’II @ a).

Since v; satisfies SAC, G; satisfies propagation criterion with respect to vector .
b) Let v =(0,8) € Vatk, B € Vo, wt(f) =1, 0 € Vi. Then

Gi(z,y) ® Gi((=,y) @ (0,8)) = gi(y) @ vi(z) @ gi(y ® B) ® vi(z)
= gi(y) @ gi(y @ ).

S-box S satisfies SAC, therefore ¢;(y) @ gi(y @ B) is balanced and G; satisfies propa-
gation criterion with respect to vector y.

(iii) The function @, a;Gi(z,y) is concatenation of 2* functions from the set
{BL, aigi(y),1 & B~ aigi(y)}. It depends on the value of P, vi(z). Since

the nonlinearity of both functions is equal, using Lemma 2.3, we can conclude that
N(@z 1 G;G ) 2 2kN(®z 1 alg') O
Remark 5.2. Notice, v;’s do not need to be balanced.

6. Conclusion

We presented methods for constructing larger substitution blocks from smaller
ones. This methods preserved SAC, that is, from SAC-fulfilling substitution blocks
(or S-boxes) are constructed again SAC-fulfilling subtitution blocks. We used con-
trolled permutations and inversions, as the basic building elements. Resulting blocks
are regular, have high nonlinearity and are immune against linear cryptanalysis.
These blocks can be interconnected in many different ways (e.g. the data inputs
of one block are control inputs of the other block and vice versa). Such SPN-like
networks have interesting properties and are object of further study. Such construc-
tions can be suitable for use in design of stream ciphers, one-way hash functions and
similiar cryptographic applications.
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A New Substitution-Permutation Network Cipher Using
Key-Dependent S-Boxes®

Liam Keliher Henk Meijer’

1 Introduction

The use of key-dependent s-boxes in block cipher design has not been widely investigated in
the literature. Research into s-box design has focussed on determination of s-box properties
which yield cryptographically strong ciphers, with the goal of selecting a small number of
“good” s-boxes for inclusion in a block cipher (e.g., DES [5], CAST[1]). Simultaneously,
however, a series of combinatorial results have demonstrated that a randomly chosen s-
box of sufficient size will possess several of these desirable properties with high probability.
This paper outlines the ongoing work of the authors’ investigation into the design of a
new block cipher incorporating key-dependent, pseudo-randomly generated s-boxes. Other
systems using key-dependent s-boxes have been proposed in the past, the most well-known
being perhaps Blowfish [17] and Khufu [12]. Each of these two systems, however, uses the
cryptosystem itself to generate the s-boxes, which renders analysis difficult — we choose
to avoid this approach. Preliminary results indicate that our proposed system has good
cryptographic strength, with the added benefit that it is immune to linear and differential
cryptanalysis, which require that the s-boxes be known. In addition, the system can easily

be extended through the use of larger s-boxes and an increased number of rounds.

2 Substitution-Permutation Nétworks

Shannon’s principles of confusion and diffusion [19, 20] are effectively realised through a
substitution-permutation network (SPN) cryptosystem [3]. An SPN with key K is an in-
vertible mapping fx : {0, 1} — {0,1}”", where N is the number of plaintext and ciphertext

*This work was partially supported by NSERC Canada.
tDepartment of Computing and Information Science, Queen’s University, Kingston, Ontario, Canada.
tCorresponding author, E-mail: keliher@qucis.queensu.ca
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bits. An SPN consists of R rounds, each made up of a substitution stage and a permutation
stage. In the substitution stage, the current N-bit string (block) is fed into a series of M
substitution bozes (s-bozes). An n X m s-box is a mapping S : {0,1}* — {0,1}™, for integers
n and m . For our purposes, we consider only the case that n = m, N = nM, and S is
invertible. We can view S as a look-up table with row indices 0,1,...,2" — 1, such that row
X contains S(X) (with the usual correspondence between {0,1,...,2" —1} and {0,1}"). We
will use the notation Z = 2,7, - - - Z, for Z € {0,1}}, where Z; is the i® bit of Z (numbering
from most to least significant). If S(X) =Y for some X,Y € {0,1}", S can also be viewed

as a vector of n functions, each mapping {0,1}" — {0, 1}:
S(X) = [11(X), v2(X), . .., v (X)],

where v;(X) = Y;. The v; are called the columns of S. As with any function mapping
{0,1}™ — {0,1}, we will at times view v; as the 2"-bit vector,

v;(0)v;(1) - --v;(2" — 1).

The substitution stage is followed by a permutation of the N bits. Decryption is accomplished
by running the SPN “backwards”, reversing the order of the rounds, and in each round first
performing the inverse permutation followed by application of the inverse s-boxes. A sample
SPN with N = 16, n = M = 4, R = 3, and using the permutation of Kam and Davida [8] is
given in Figure 1 (key not shown). |

The two standard ways to incorporate the key into an SPN are shown in Figure 2 (see
[6]). In the first method (a), the input to each s-box is first XOR’d with n bits derived from
the key before being fed into the s-box. This may be performed during é,a,ch round, or only
during certain rounds. The second method (b) uses one or more key bits to select among

multiple s-boxes for each sub-block of n s-box input bits.

3 S-box and SPN Properties

Since the s-boxes comprise the only nonlinear component of an SPN, they are a crucial
source of cryptographic strength. S-box research has focussed largely on determining which
properties yield a cryptographically “good” s-box. Some of the important properties are
given below. In this section, we use e; to denote a unit vector with 1 in position i, and w(v)

to mean the Hamming weight of vector v.
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plaintext

round3 —

Figure 1: Example SPN with N =16, n=M =4, R=3

3.1 Completeness

In 1979, Kam and Davida [8] defined the property of completeness for a bijective s-box
S :{0,1}" — {0,1}". S is complete if for all 4,5 € {1,2,...,n}, there exists X € {0,1}"
such that S(X) and S(X@e;) differ in at least bit 5. That is to say, every output bit depends
upon every input bit. An SPN is complete if it satisfies the above property for every key.
Kam and Davida proposed permutations for each round which produce a complete SPN after

a minimum number of rounds (given complete s-boxes).

3.2 Avalanche and Strict Avalanche

Feistel et al. defined a property of s-boxes and SPNs known as the avalanche criterion
(AVAL) [3, 4]. A function f : {0,1}* — {0,1}® satisfies AVAL if whenever one input bit is
changed, on average half the output bits change. In 1985, Webster and Tavares combined
the completeness and avalanche properties into the strict avalanche criterion (SAC) [21]. A
function f : {0,1} — {0,1} satisfies SAC if for all 3,5 € {1,2,...,t}, flipping input bit
1 changes output bit j with probability exactly one half. It is easy to demonstrate that a
function f which satisfies SAC is complete, and satisfies AVAL. In addition, f is said to
satisfy higher order SAC (HOSAC) if for all j € {1,2,...,t}, flipping any combination of
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L1l .
input key bits

— 5

S-box
L
(a) key bits XOR'd with S-box inputs

key bit —3

(b) key bits used to select among S-boxes

Figure 2: Two methods of incorporating the key into an SPN

one or more input bits changes output bit j with probability one half [13]. The distance
to SAC (DSAC) and distance to HOSAC (DHOSAC) of a function g : {0,1}* — {0,1} are
defined as follows [13]:

1 2n—1
DSAC() = ,max 3/ = ¥ g(X) @g(X@e)
+2yeeny X=0
1 2%—-1

DHOSAC(g) = ag{l(?,;c}t 3 21— % g(X) @g(XEB&)l.
’ X=0

If f:{0,1}* — {0,1}* and the columns of f are v;,vy,...,v;, we define

DSAC(f) = ;max tDSAC(v,-)
DHOSAC(f) = ax tDHOSAC(v,-).

7=1,2,...,
Note that if f satisfies SAC (HOSAC), then DSAC(f) =0 (DHOSAC(f) =0).
3.3 Bit Independence

Webster and Tavares, in the paper in which they introduced SAC [21], also defined a property
called the bit independence criterion (BIC). A function f : {0,1}* — {0,1} satisfies BIC
if for all 4,5,k € {1,2,...,t}, with j # k, inverting input bit i causes output bits j and k
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to change independently. Symbolically, if v;,vs, ..., v; are the columns of f, and j # k, we

have

BIC(vj, us) = _max % Txeqo [1i(X) @ v;(X @ &)] [vu(X) @ ve(X @ &;)] — 777
s (% — %) (% - %)

’ (1)

where

1
Xe{o1}

BIC(vj, vg) gives the bit independence correlation coefficient of columns j and k. The higher
order BIC correlation coefficient of of columns j and k, HOBIC(v;, vg), is defined analogously

to (1), except that the maximum is taken over all input changes consisting of one or more
bit flips. We then define -

BIC(f) = max BIC(v;, vi)
j
HOBIC(f) = max HOBIC(vj, vx)

as a measure of how close f is to satisfying BIC (HOBIC). If f satisfies BIC (HOBIC)
exactly, then BIC(f) =0 (HOBIC(f) = 0).

3.4 Nonlinearity

A function f : {0,1} — {0,1} is called affine if there exist constants a; € {0,1}, for
i=0,1,...,t, such that for all X € {0,1},

fX)=a®a1 X1 9aXo @ & aXs.

An affine function is called linear if ap = 0. S-boxes with “high nonlinearity” are needed to
make an SPN immune to linear cryptanalysis [10]. Let A; be the set of all affine functions
g:{0,1}* = {0,1}. For f: {0,1} — {0,1}, we define the nonlinearity of f as

nl(f) = minw(f & g)

(in this expression, we view f and g as 2-bit vectors). If S is an s-box, let C be the set of

all nonzero linear combinations of the columns of S. Then the nonlinearity of S is

nl(S) = mln nl(c).
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3.5 XOR Table Distribution

In 1991, Biham and Shamir introduced a powerful cryptanalytic technique known as differ-
ential cryptanalysis [2]. They have successfully applied their attack to a variety of SPNs,
including DES. Differential cryptanalysis requires knowledge of the XOR tables of the s-boxes.
For an n X n s-box, S, the XOR table has rows and columns indexed by 0,1, 2,...,2" —1,
and the table entries are defined as follows. If 4, j € {0,1,2,...,2" —1}, position (3, j) in the
XOR table contains the value

HX e {0,1}*: SX) e S(X®1) = j}| (2)

(in (2) we are treating i and j as their equivalent n-bit strings). Note that (2) always
evaluates to an even number. The pair (%, j) is called an input/output XOR pair. Differential
cryptanalysis exploits such XOR pairs with large XOR table entries. An SPN can be secured
against differential cryptanalysis by selecting s-boxes with low XOR table entries, ideally all
0 or 2 (the one exception is entry (0,0) which has value 2"*). Even if the XOR table is not
directly calculated, resistance to differential cryptanalysis can be achieved by assuring that

the s-boxes have good diffusive properties, i.e., they reasonably satisfy AVAL or SAC [16].

4 Properties of Random S-boxes

Since the object of this proposal is a new SPN cipher using key-dependent s-boxes, it will
be useful to investigate the average properties of random invertible n x n s-boxes. Since the

introduction of DES [5], a number of such results have appeared in the literature.

4.1 Completeness

- O’Connor proved in [14] that a randomly chosen n x n invertible s-box has a high probability

of being complete for sufficiently large n. In fact, he showed that the probability that such

an s-box is not complete is

92714n—1
For an exact formula, see [15].
4.2 Avalanche and Strict Avalanche

The authors have not found any results giving the probability that a random invertible n x n
s-box satisfies AVAL or SAC (although there are bounds on the probability that a random
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function f : {0,1}* — {0,1} satisfies SAC). On the other hand, a number of theoretical
and experimental results exist concerning the AVAL property for SPNs. Heys and Tavares
developed a probabilistic model for the AVAL property of an SPN [7]. Their results for
N =64 and n = M = 8, using randomly selected s-boxes and the fixed permutation of Kam
and Davida [8], indicate that AVAL is reasonably satisfied after 5 or more rounds. In fact,
if Eg is the expected number of output bit changes after R rounds when one input bit is
flipped, and we define € = |1 — Eg/(N/2)|, then € < 1073 for R > 7.

4.3 Nonlinearity

For an invertible n x n s-box S and an integer 2L (0 < L < 2"2), Youssef and Tavares [22]
prove that

prob [nl(S) < (2" -2L)] < i !)25!2,1 =) lz}% (23;_ 4 z) : (3)

If n = 8, we have, for example, prob [nl(S) < 64] < 1.4 x 107" and prob [nl(S) < 80] <
4.6 x 107°, Experimental results support the theoretical result of (3). For example, Heys [6]
generated 200 random invertible 8 x 8 s-boxes and found that each satisfied 86 < nl(S) < 98.

4.4 XOR Table Distribution

If S is a randomly chosen invertible n x n s-box, and 0 < A < 2" is an even integer, a
formula of Youssef and Tavares gives the probability that the maximum XOR table entry
of S (denoted maxXOR(S)) is > A [22]. For example, if n = 8 and A = 16, we have
prob[maxXOR(S) > 16] < 0.0042. ‘

4.5 Cyclic Properties

There is some indication that the cyclic properties (cycle length, number of cycles) of an
s-box are related to other cryptographic properties. Youssef et al. give experimental results
which show that, on average, s-boxes with fewer fixed points have higher nonlinearity and
lower maximum XOR table entries [23]. They prove that the expected number of fixed points
for a random invertible s-box is 1, with a variance of 1. They also state that the expected
value and variance of the number of cycles is approximately log, 2® ~ 0.69n; and that the
expected cycle length is 2"7! + 1/ 2,'where the expected cycle length is defined as the value

of the length of the cy(fle to which a randomly chosen element belongs.
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5 The Proposed Cryptosystem

5.1 Design and Rationale

The cryptosystem we are investigating is a 64-bit SPN with 8 x 8 key-dependent s-boxes.
The SPN design has the advantages of being simple, and having been subjected to extensive
cryptanalysis [6]. In each round we use the permutation of Kam and Davida [8], which
connects output bit i of s-box j in round r, to input bit j of s-box ¢ in round r+1 (1 < 4,j <8,
1 <7 < R). The s-boxes are changed from round to round, so the total number of s-boxes
generated is M - R. The number of rounds will be determined from the results of the testing
described in Section 5.3.

The fact that the s-boxes are unknown to the cryptanalyst is one of the principal strengths
of our system, since both linear and differential cryptanalysis require known s-boxes. It is not
apparent that the pseudo—random nature of the s-boxes introduces any exploitable weakness
into the system. The results of Section 4 indicate that if the s-boxes are generated from the
key in a sufficiently random fashion, each s-box has a high probability of being complete,

possessing fairly high nonlinearity, and having its largest XOR table entry < 16.

5.2 Random S-Box Generation Process

Figure 3 depicts the conceptual layout of our s-box generation process. The key, K, is used

K key) = K, = K,~f- K, K~ o o

S I B

Figure 3: Conceptual approach to random s-box generation

to generate a series of subkeys K, K», ..., Kyg, by application of a function f- A second
function g generates the i*" s-box, S;, from K;. The functions f and g must meet certain
requirements. First of all, they must produce s-boxes which are satisfactorily random, in
order to achieve the results of Section 4. Secondly, even though the s-boxes are in principle

secret, we want the generation process to be such that if a cryptanalyst determines one of
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the s-boxes, this does not yield any information about any other s-box. There are a number
of ways to achieve this security. One approach is to make f cryptographically secure; g can
then be any simple function which generates pseudo-random s-boxes from the K;. Another
method is to make g one-way, for example a secure hash function, or a many-to-one function.
Then it is only required that f be sufficiently random.

We are currently pursuing the first approach—we have chosen the RC4 stream cipher
(given in [18]) for f. RC4 is a simple and widely used cipher with a variable-length key (up
to 2048 bits). Software implementation of RC4 is extremely short, requiring about ten lines
of C code. (Although technically proprietary, the RC4 cipher is publicly known and has
undergone cryptanalysis [18].) For g we use the following simple algorithm.

for i = 1 to 256

sbox[i] := i; /* initialise to identity s-box */

for i = 1 to 256
j := RandomInRange (i, 256);
swap (sbox[i], sbox[jl);

end for

where RandomInRange uses RC4 to generate a random integer in the interval [z, 256]. This
algorithm. chooses an s-box uniformly from the set of all invertible 8 x 8 s-boxes. If RC4 is
assumed to be cryptographically secure, it is clear from Figure 3 that knowledge of S; will
not give any information about S, for i # j.

We are also considering a number of other options for f and g. As this work progresses,
test results for these different methods will enable us to determine the approach which yields
the most secure SPN. Note that we plan to keep the s-box generation process separate from
the SPN itself. Two other well-known cryptosystems, Blowfish [17] and Khufu [12], also use
key-dependent s-boxes, but do not make this separation. Each uses the cryptosystem itself
in some initial state to pseudo-randomly generate s-boxes; these are then used for the actual
encryption and decryption. By avoiding this self-referential approach, we hope to simplify
the analysis of our system.

Our system will require a small amount of startup time to generate the s-boxes, making
it suitable for applications such as cellular phones, which can tolerate a short startup time.
For example, a non-optimised software version of the SPN using 16 rounds required 0.07 sec.
of startup time on a SUN Ultra 1 (140 MHz UltraSPARC CPU).
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5.3 Testing Approaches

We are in the process of subjecting our SPN design to a variety of analytical and statistical

tests.

1. Verification that the s-box generation process is sufficiently random. The s-boxes

produced must be consistent with the theoretical results of Section 4.
2. Randomness tests of sample ciphertext (see [9, 11]).

3. Statistical testing to determine minimum number of rounds for SPN to satisfy proper-

ties such as AVAL and completeness.

4. Investigation of concept of correlation between s-bozes. We want to ensure that disclo-
sure of one s-box does not yield any statistical information about a second s-box. Let
S; and S; be two s-boxes generated for our cryptosystem. We are considering (among

others) correlations between:

(a) the columns of S; and S; (possibly cyclically shifted up or down)
(b) the XOR table entries of S; and S;

(c) the nonlinearities of S; and S;

5.4 Preliminary Results

Using the method of Section 5.2 involving RC4, we generated 500 random s-boxes and tested
them for the properties of Section 4 (a 128-bit key was selected at random). We summarise
the results in Figure 4. Section 4.1 states that each s-box has a high probability of being
complete. It is easy to see that an n x n s-box, S, is complete if and only if DSAC(S) # 2,
Therefore, since the maximum DSAC value is 22, all 500 s-boxes are complete.

Figure 5 compares the distribution of s-box nonlinearities as given by the theoretical
result of Youssef and Tavares [22] (Section 4.4), with that obtained by our generation of
500 invertible s-boxes. The middle row gives upper bounds on the probability that the
nonlinearity of a randomly chosen invertible s-box is less than or equal to the NL value given
in the first row. The last row gives the fraction of our s-boxes with nonlinearity less than or
equal to the given value NL. The similarity of theoretical and experimental values suggests

that our s-box generation process behaves sufliciently randomly.
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MEAN | STD DEV | MIN | MAX
nl(S) [ 92.76 2.13 86 96
maxXOR(S) | 11.25 1.17 10 | 14
DSAC(S) | 14.64 2.37 10 22
DHOSAC(S) | 20.37 1.79 16 28
BIC(S) | 0.032 0.265 0.188 | 0.414
HOBIC(S) | 0.066 0.341 0.293 | 0.443
num. fixpt [ 0.95 1.07 0 6
num. cycles { 6.14 2.05 1 12
exp. cycle length | 125.07 50.77 38.02 | 256.00
column corr. | 0.0033 0.2578 | 0.2188 | 0.3594
lin. comb. corr. | 0.0241 0.2760 | 0.2344 | 0.3438

Figure 4: Results of random s-box generation using RC4

NL 84 86 88 | 90 | 92 | 94 | 96 | 98
theoret. prob[nl(S) <= NL] | 0.0037 | 0.015 [ 0.058 | 0.21 | 0.70 | >1 | >1 | >1
exper. prob[nl(S) <= NL] 0.0 |0.012|0.058 | 0.18 | 0.49 | 0.88 |{ 1.00 | 1.00

Figure 5: Theoretical and experimental distribution of nonlinearities

In Figure 6 we present a similar probability distribution comparison, this time for the val-
ues maxXOR(S). The middle row gives a theoretical upper bound that prob[maxXOR(S) >
A], while the third row gives the fraction of the 500 s-boxes we randomly generated for which
maxXOR(S) > A. | A

The s-boxes generated exhibit predictable cyclic properties (Section 4.5). The mean and
variance (square of standard deviation) of the number of fixed points are 0.95 and 1.14,
respectively, both close to the theoretical value of 1. The mean and variance of the number
of cycles, 6.14 and 4.20, roughly approximate the theoretical value log, 2% ~ 5.55. And the
mean of the expected cycle length is 125.07, with a theoretical value of 128.5.

A 10 12 14 16
theor. prob[maxXOR(S) > A] | > 1 | 0.94 | 0.067 | 0.0042
exper. prob[maxXOR(S) > A] | 1.00 | 0.57 | 0.054 | 0.0

Figure 6: Theoretical and experimental distribution of maximum XOR table entries
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The last two rows of Figure 4 contain values resulting from our investigation of correlation
between s-boxes. If the 500 randomly generated 8 x 8 s-boxes are Sy, Sz, . . ., S50, for a given
S; and s € {0,1,...,255} define the s-box S#(X) = S;((X — s) mod 256), i.e., S} is S;
cyclically shifted down s rows. For all ¢,j,k,s (1 <%<499,1<j,k <8,0<s<255), we
compute the correlation coefficient (see Section 3.3) between column j of S; and column k of
S%.1- The row of Figure 4 labelled “column corr.” reports the results of these computations.
The last row of Figure 4 is obtained by calculating each correlation coefficient between an
element of C; and an element of C;.;, where C; is the set of all nontrivial linear combinations of
the columns of S;. The last two rows of Figure 4 do not hold any extreme values, suggesting
that the correlations investigated do not yield useful cryptanalytic information.

We performed another statistical test to verify the lack of correlation between columns
of consecutive s-boxes. We generated 30,000 pairs of consecutive s-boxes using RC4 (with a
128-bit key): (S1,T1), (S2, T2), - - - » (S30000, T30000)- For each j, k € {1,2,...,8}, we computed
the distribution of the correlation coeflicient between column j of S; and column k of T; for
1 <1< 30, 000. Each such distribution was compared to the theoretical distribution of
correlation values obtained when two balanced 256-bit vectors are chosen at random (this is
easy to calculate). Using a chi-square test, we determined that the 64 distributions obtained

behaved as expected, appearing to be drawn from the theoretical distribution.

6 Conclusion

The research direction presented in this proposal holds promise because few SPN cryptosys-
tems exist which make use of key-dependent s-boxes. This research has the potential of
resulting in a new cryptosystem that appears to be secure. The key—dependent nature of
the s-boxes makes our proposed system immune to linear and differential cryptanalysis, and
the use of (relatively large) 8 x 8 s-boxes guarantees with high probability that the s-boxes
which are generated will possess good cryptographic properties.
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Abstract

- S-boxes with a uniformly half-occupied difference distribution table are considered
useful in designing a block cipher secure against differential attacks. Researchers, how-
‘ever, have conjectured that for all n > m, there exist no n x m S-boxes with a uniformly
half-occupied difference distribution table. Prior to this work, the best known result -
that supports the conjecture is that there exist no guadratic S-boxes with a uniformly
half-occupied difference distribution table if n or m is even. In this paper we pro-
vide further evidence to support the conjecture. In particular, we show that there
exists no guaedratic S-box with a uniformly half-occupied difference distribution table
if n = 2m — 1. The other two contributions of this work are concerned about two of
most important nonlinear characteristics of (general) S-boxes, namely differential uni-
formity and nonlinearity. In particular, we derive a non-trivial and tight lower bound
on the differential uniformity of an S-box, and then reveal a relationship between the
nonlinearity and differential characteristics of an S-box.

1 Introduction

This paper deals with n x m S-boxes with n > m. Success of the notable differential
cryptanalysis on various block ciphers (3, 4] has motivated researchers to search for S-boxes
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whose difference distribution tables are relatively flat. As S-boxes with a completely flat
difference distribution table have been known to be weak in resisting against differential at-
tacks, naturally one of the research focuses has been on designing S-boxes with a uniformly
half-occupied difference distribution table (UHODDT), i.e., S-boxes whose differential dis-
tribution tables contain an equal number of zero and identical non-zero entries in each of
their rows (not taking into account the first row). Previous works directly or indirectly
related to this line of research include, but not limited to, [1, 2, 12, 13, 14, 15, 16].

Defying efforts by a number of researchers, no n x m S-box with a UHODDT has
emerged. This has led to a conjecture which states that

for all n > m, there exists no n X m S-boz with ¢ UHODDT.

Some progress in proving the conjecture was made in [22] where it was shown that when
n or m is even, there exists no quadratic n X m S-box with a UHODDT (see Theorem 1
of [22]). This paper reports further progress in proving the conjecture. In particular, we
show that when n 2 2m — 1, there exists no quadratic n X m S-box with a UHODDT. We
hope that this new piece of evidence can be of some contribution to the eventual success in
proving the conjecture.

The second issue addressed in this paper is on the lower bound of differential uniformity.
The differential uniformity of an S-box is defined as the largest value in the differential
distribution table of the S-box. For an n x m S-box, it is easy to see that its differential
uniformity is at least 2*~™. As another contribution of this paper, we will show a new tight
lower bound that considerably improves the “trivial” bound of 2*~™.

The final issue addressed in this work relates more specifically the nonlinearity of an
S-box to its difference distribution table. In particular, it shows an upper bound on the
nonlinearity of the S-box expressed in terms of three parameters: the number of input bits,
the number of output bits and the values in the leftmost column of its difference distribution
table. We also compare the new upper bound with previous works in the same area.

The remainder of this paper is organized as follows: Section 2 introduces formal nota-
tions and definitions used in this paper. Section 3 represents a sample of known results on
S-boxes that are relevant to this paper. This is followed by Section 4 where it is proved that
for n 2 2m — 1, there exists no quadratic n X m S-box with a UHODDT. A general tight
lower bound on the differential uniformity of an S-box is presented in Section 5, and then
a relationship between the nonlinearity of an S-box and its difference distribution table is
proved in Section 6. Finally the paper is closed with some remarks in Section 7.

2 Basic Notations and Definitions

This section is intended as a summary of the minimum amount of mathematical knowledge
required in rigorously treating issues on S-boxes to be discussed in this paper.

The vector space of n tuples of elements from GF'(2) is denoted by V,,. These vectors,
in ascending alphabetical order, are denoted by ag, a1, ..., @2n_3. As vectors-in V;, and
integers in [0,2" — 1] have a natural one-to-one correspondence, it allows us to switch from
a vector in V,, to its corresponding integer in [0,2" — 1], and vice versa.

Let f be a function from V,, to GF(2) (or simply, a function on V,,). The sequence of
f is defined as ((—1)f(e0) (—1)fle) | (—1)flezn-1)) while the truth table of f is defined
as (f(ag), fla1), --., flagn_1)). f is said to be balanced if its truth table assumes an equal
number of zeros and ones. We call h(z) = 2121 @ - - - ® anz, ® ¢ an affine function, where
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z = (21,...,2a) and aj,c € GF(2). In particular, h will be called a linear function if ¢ = 0.
The sequence of an affine (linear) function will be called an affine (linear) sequence.

The Hamming weight of a vector v, denoted by W (v), is the number of ones in v. Let
f and g be functions on V,,. Then d(f,g) = 3= f(;)4(z) 1, Where the addition is over the
reals, is called the Hamming distance between f and g. Let ¢y, ..., pont+1_; be the affine
functions on V,,. Then Ny = min;—g__on+1_1 d(f, ;) is called the nonlinearity of f. It is
well-known that the nonlinearity of f on V, satisfies Ny < 21 —93"1 The equality holds
if and only if f is bent (see P. 426 of [10]).

Given two sequences a = (e1,...,0,) and b = (bs,...,b,,), their component-wise prod-
uct is denoted by a*b, while the scalar product (sum of component-wise products) is denoted

by {a,b).

Definition 1 Let f be a function on V,,. Fora vector o € V,,, denote by £(a) the sequence of
f(z®c). Thus £(0) is the sequence of f itself and £(0)x£(a) is the sequence of f(z)® f (2@ a).
Define the auto-correlation of f with a shift a by

A(a) = (£(0),£(e))-

The Sylvester-Hadamard matriz (or Walsh-Hadamard matriz) of order 2*, denoted by
H,, is generated by the recursive relation

Hn—l Hn—~1

Hn =
l: -Hn—l _Hn——l

] ,n=1,2,..., Ho=1.
Each row (coluhm) of H, is a linear sequence of length 2.
The following two lemmas can be found in [20].

Lemma 1 Let £ be the’sequence of a function f on V,. Then the nonlinearity of f, Ny
can be calculated by )

Ny =2 = Zmaa{|{6,£)],0< i S 2" -1}

where {; is the ith row of H,, 1= 0,1,...,2" — 1.

3 Some Known Results on S-boxes

An n x m S-box or substitution box is actually a mapping from V, to V,, ie., F =
(f1,- .., fm), where n and m are integers with n 2 m 2 1 and each component function f;
is a function on V,,. In this paper, we use the terms of mapping and S-box interchangeably.

As can be seen from the design of many practical block ciphers, researchers are mainly
concerned with regular S-boxes only. A mapping F = (f1,-..., fm) is said to be regular if
F(z) runs through each vector in V,, 2*~™ times while z runs through V;, once. One can
easily see that n x m regular S-boxes exist only for n 2 m. '

The following lemma states a useful result on the regularity of an S-box. This result
has appeared in many different forms in the literature. Qur description follows the binary
case of Corollary 7.39 of [9].

Lemma 2 Let F = (f1,..., fum) be a mapping from V,, to V,,,, where n and m are integers
withn 2 m 2 1 and each f;(z) is a function on V,,. Then F is regular if and only if every
non-zero linear combination of f1,..., f, is balanced.
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The concept of nonlinearity can be extended to the case of an S-box. The standard
definition of the nonlinearity of F' = (f1,...,fn) is

m

- Np = ming{N,|g = @CJst cj € GF(2) g#0}.
=1

Now we introduce three more notations associated with F = (fi,..., fn). Namely,
ki(a), Aj(e) and 7;.

Definition 2 Let F = (f1,...,fm) be an n X m S-boz, @ € Vp, § = 0,1,...,2™ —~ 1 and

Bi = (b1,.-.,bm) be the vector in Vy, that corresponds to the binary representation of j. In

addition, set g; = @4, bufu be the jth linear combination of the component functions of

F. Then we define

1. kj(d) as the number of times F(z) ® F(z ® o) runs through B; € Vy, while x runs
through V,, once,

2. Aj(a) as the auto-correlation of g; with shift «,

3. n; as the sequence of g;.

Using the three notations, we formally define three tables/matrices related to F' =

(f17 K ’fm)-

Definition 8 For an S-box F = (f1,..., fm), set

ko (ao) ki (ao) | ven kém_l(ao) |
ko(c1) ki(os) ... kam_i(oy)
K = A
kologn—1) Fki(age—1) ... kam_1(age—1)

Ao(ao) Al(ao) cae Azm_l(ao)
Do) Ag(cr) ... Agm_z(en)

Ao(agn_1) Ai(aze_1) ... Azm_i(ogn_1)

{n0, £o)? (m,%)2 -+~ (ngam-1,40)>
(770: £1>2 (7’13 £1>2 e (772"‘—13 ‘el)z

(nosan—1)? (m,€an—1)? <+ (mam_1,42n_1)?

where £; is the ith row of H,, ¢ = 0,1,...,2" — 1. The three 2" x 2 matrices K, D and
P are called difference distribution table, auto-correlation distribution table and correlation
immunity distribution table of the S-box F' respectively.

The following lemma, first appeared in [21], shows an intimate relationship between the
three tables K, D and P defined above. It turns out that the lemma is very useful in
examining cryptographic properties of an S-box. In particular, part (ii) of the lemma will
be used in proving one of the main results in this paper.
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Lemma 3 Let F = (f1,...,fm) be a mapping from V,, to Vi, where n and m are integers
withn 2 m 2 1 and each f;(z) is a function on V,,. Set g; = @y cufu where (c1s-vsCm)

is the binary representation of integer j, § =0,1,...,2™ —1. Then
(1)
(ko(o), k1las), - - ., kam—1(0)) Hon = (Do), Aaes), - - ., Aom_y(en))
where a; is the binary representation of integer i, |
(i) D= KH,,,
(i) P=H,D,
(iv) P = H,KHy,.

Now we consider an S-box in terms of its usefulness in designing a block cipher secure
against differential cryptanalysis [3, 4]. The essence of a differential attack is that it exploits
particular entries in the difference distribution tables of S-boxes employed by a block cipher.
The difference distribution table of an n x m S-box is a 2™ x 2™ matrix. The rows of the
matrix, indexed by the vectors in V;,, represent the changes in the inputs, while the columns,
indexed by the vectors in V,,, represent the change in the output of the S-box. An entry in
the table indexed by (a, B) indicates the number of input vectors which, when changed by
o (in the sense of bit-wise XOR), result in a change in the output by 8 (also in the sense
of bit-wise XOR).

Note that an entry in a difference distribution table can only take an even value, the sum
of the values in a row is always 2, and the first row is always (2*,0,...,0). As entries with
higher values in the table are particularly useful to differential cryptanalysis, a necessary
condition for an S-box to be immune to differential cryptanalysis is that it does not have
large values in its differential distribution table (not counting the fifst entry in the first
row).

In measuring the strength of an S-box (in terms of the security of a block cipher that em-
ploys the S-box) against differential attacks, a useful indicator commonly used is differential
uniformity whose formal definition follows [14]. :

Definition 4 Let F be an n x m S-box, where n 2 m. Let § be the largest value in the
differential distribution table of the S-box (not counting the first entry in the first row),
namely,

6= max, max|{z|F(z) @ Flz © ) = )

or equivalently
§ = max{k;(a)|lj =0,1,...,2" — 1, @ €V, a # 0}.

Then F is said to be differentially §-uniform, and accordingly, § is called the diﬁerentialb
uniformity of F'.

Obviously the differential uniformity § of an n x m S-box is constrained by 2"™™ <
6 < 2™, Extensive research has been carried out to construct differentially é-uniform S-
boxes with low 6 [1, 2, 12, 13, 14, 15, 16]. Some constructions, in particular those based on
permutation polynomials on finite fields, are simple and elegant. However, caution must be
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taken with Definition 4. In particular, it should be noted that low differential uniformity
(a small 8) is only a mecessary, but not a sufficient condition for immunity to differential
attacks. This is shown by the fact that for n 2 m, nxm S-boxes constructed in [1, 12], which
have a flat difference distribution table, are extremely weak against differential attacks,
despite the fact that they achieve the lowest possible differential uniformity § = 2"~™ [4, 5,
17].

We are particularly interested in n X m S-boxes that have the following property: for
each nonzero vector o € V,,, F(z) ® F(z @ «) runs through 2™, 1 £ t < m, of the vectors
in Vi, each 22~ ™%t times, but not through the other 2™ — 2™~ vectors in V,,,. With each
row in the difference distribution table of such an S-box, 2! of its entries contain a value
2n—m+t while the remaining entries contain a value zero. For simplicity, we say such a
difference distribution table to be uniformly 2™ *-occupied.

For n odd, n = m (i.e., permutation S-boxes) and ¢ = 1, there has been a large body of
research (see for instance [2, 12, 13, 14, 15, 16]). One of the properties of these permutations
is that their differential distribution tables are all 2-uniform, namely, half of the entries in
a row contain a value zero while the other half contain a value 2. For this reason, it has
been believed that these permutations achieve the highest possible robustness against the
(first order) differential attack.

As an extension of the above observation to a general nxm S-box with n 2 m, one would
expect that the S-box would be highly useful in resisting differential attacks if its difference
distribution table is uniformly 2™ 1-occupied, i.e., each row in the difference distribution
table contains an equal number of zero and non-zero entries with all the non-zero values
being identical to 2% ™+, For simplicity, we say that such an n x m S-box has a uniformly
half-occupied difference distribution table (UHODDT).

Intuitively, an n X m S-box with a UHODDT is expected to be useful as it seems to
sit nicely in the middle of two undesirable extremes: S-boxes whose differential distribution
tables contain too few non-zero entries and S-boxes whose differential distribution tables
contain too many non-zero entries. At one extreme, the differential distribution tables
contain high-valued entries which may be exploited by differential attacks, while at the
other extreme, the differential distribution tables may be so close to a flat one that the
S-box is again exploitable by differential attacks.

As we mentioned earlier, despite efforts by a number of researchers around the world,
we have not witnessed the appearance of an n X m S-box with a UHODDT, except for the
case of n = m with n odd. This has led us to a conjecture:

Conjecture 1 For alln > m, there ezists no n x m S-boz with « UHODDT.

The first major step towards proving the conjecture was made in Theorem 1 of [22]
for a special class of S-boxes called quadratic S-bozes whose algebraic degrees are two. In
particular, it has been proved in [22] that for n 2 4, there ezists no quadratic n X m S-boz
with a UHODDT if n or m is even.

In the next section, we provide further evidence to support the correctness of the con-
jecture. Before proceeding to the discussions, we would like to stress that a UHODDT is
not a sufficient condition for the cryptographic usefulness of an S-box. A really “good”
S-box should satisfy a set of conditions associated with all currently known cryptanalytic
attacks. The size of the set seems to be expanding with advances in cryptanalytic attacks.
For instance, recent progress in “high-order” differential attacks [8, 18] shows that it is
desirable for an S-box to have a high algebraic degree. .
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4 Non-existence of Certain Quadratic S-boxes

There are a few directions one can follow to improve the result in [22]. These directions
may include (1) proving the conjecture for higher-degree (say cubic) S-boxes, (2) proving
the conjecture for quadratic S-boxes, but with different parameters. In what follows we
report our progress in the second direction.

Theorem 1 There exists no quadratic n X m S-box with a UHODDT when n 2 2m — 1.

Proof. Assume for contradiction that there exists a quadratic nxm S-box with a UHODDT,
say F' = (f1,-- -, fm), for n 2 2m—1. Write all the nonzero linear combination of fi, ..., fm
as g1,...,gom—1. From the proof of Theorem 1 of [22], each nonzero vector in V;, is a linear
structure of a unique gj, i.e., there is a unique g; such that g;(z)® g;(z® ) is a constant. It
is easy to verify that for each j = 1,...,2™ 1, the nonzero linear structures of g;, together
with the zero vector, form a ¢;-dimensional subspace of V,, for an integer ¢;. We denote the

subspace by W;.
Note that
Vi =WiU--UWam_g @
where
W; N W; = {0} if j # . | )

Thus 2% + -+ - + 2%2™-1 = 2" 4 2™ — 2 and thus there is a jg, 1 £ jo £ 2™ — 1, such that

N on 4 9m _ 9

t.
2% = om 1

g 211-—‘"& + 1

Since 2% must be an integer power of 2, we conclude
21,_,-0 > 21:.-—1u+1. ‘
Now consider Wj,. From linear algebra, V,, can be expressed as a partition
Va=UUUU---U Uzn—fjo 3)
satisfying
(@) Uo = Wy,
(i) |Uj] = 2%,
(iii) Uj N U; = ¢ where ¢ denotes the empty set,

(iv) two vectors o, o belong the same class U; (also called a coset) if and only if &/ ®a” €
Us.

Now we focus on Uy. Since U3 N Up = ¢, from (1), we have
U C(WiU-- UWj,a UWj41 U---U Wam_g). (4)

‘Note that |U3| = 2% 2 2%~™+1. By the assumption, we have n — m + 1 = m. Thus
[U1] > 2™ — 1. (4) implies that there is 4g, 49 € {1,---,50 — 1,70+ 1, --,2™ — 1}, such that
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Wi, NU1| 2 2. Let o/, o € Wy, N Uj. Since o,a” € Uy, from the above property (iv), we
0 0

have o/ @ o' € Uy = Wj,. On the other hand, since o, € W;, and W;, is a subspace, we
must have o/ @ o € W;,. This proves that

o @ o' € Wi, N Wj,. (5)
Since 39 € {1,---,j0 — 1,70 + 1,---,2™ — 1}, we have ig # jo. This contradicts (2). 0

We note that both Theorem 1 in this paper and Theorem 1 in [22] can be extended to
S-boxes with partially bent component functions introduced in [6].

5 A Lower Bound on Differential Uniformity

Recall that the differential uniformity, denoted by &, of an n x m S-box is defined as the
largest value in the differential distribution table of the S-box (not counting the first entry
in the first row), namely,

5= mox ;&Oglaxl{‘”IF(“’)@F(‘”@“) B}

(See Definition 4). As discussed earlier, § is bounded by 2"~ < § < 2%, and generally
speaking S-boxes with a smaller § are desirable in designing a block cipher secure against
differential attacks. This motivates us to improve the “trivial” lower bound 2"~™ on the
differential uniformity §. -

The following lemma will be used in our dlscussxons It is identical to Lemma 2 of [19].

Lemma 4 Let real valued sequences ag,...,asn_1 and by, ...,ban_1 satisfy
(@0, ...,a2n_1)Hy = (bo,...,b2n—1).

For any integer p and ¢, p+q = n, 1 < P,q Sn-1, setoj = 234:-61 j214s, Where
i=0,1,...,22 —1. Then

2%(ag,a21,0221,.. ., a('zp_l)zq)Hp = (00,015.--,020-1)- (6)
Now we prove the second main result of this paper.
Theorem 2 Let F = (f1,...,fm) be an n X m S-bozx, where n and m are integers with
n2m 2 1 and each fj(z) is a function on V,,. Set g; = @y cufu where (c1,...,Cm) is the
binary representation of integerj, j = 0,1,...,2™~1. Denote by A;() the auto-correlation
of g; with a shift o, and set Ay = max{|A;(e)||j=1,...,2" -1, a €V, a # 0}. Then
we have
6 g 211.—1n + 2—1ILAM
Proof. Let Aji{cyr) = Apy. By Part (ii) of Lemma 3, we have
27" (Ao(es), Arlatir), - ., Aom_1(0ir)) Hun = (ko(05) k1 (o), . s kam—1(e)) (7)
Applying Lemma 4 to (7), we get

2111,—12—1II-(A0 (ail)’ Azm—-l (ai'))Hl = (007 01)
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where g; = 23261-1 kjom-144, 5 = 0,1. Hence
27 (Ao(eir) + Agm-i () = 00

and

27 (Ao(aw) — Agm-1(ap)) = 03
Thus there is a 7029+ s¢ for 0 < 59 £ 2™ 1 —1 and jo = 0 or 1, such that

kjo2a+5 2 27"(Ao(@y) + Agm (eir))-
Recall that Ag(a) = 2" for all @ € V,,. So we have
kj024+30 22" (21" + Agm—1 (a,-:)).

According to Section 5.3 of [17], the differential uniformity of F is invariant under a non-
singular linear transformation on the variables of F. Thus by choosing an appropriate
nonsingular linear transformation on the variables of F', we have

kjo2'1+so -2_ 21L—m + 2—-1ILAM

and hence
6 g 27‘»—7’& + 2—1’LAM.

O

When Ajps = 0, every nonzero linear combination of the components of F is a bent
function. (Such S-boxes do exist [1, 12], but are not regular.) In this case we have § = 2™,
This indicates that the bound in Theorem 2 is tight for n X m S-boxes with n 2 m.

6 Relating nonlinearity of S-boxes to their differential char-
acteristics

After the discovery of differential attacks in [4], an equally notable cryptanalysis method, the
linear cryptanalytic attack, was subsequently introduced in [11]. Identifying relationships
between these two types of attacks has been an interesting research area, both from the
view point of cryptanalysis and the design of secure ciphers. We will show in this section a
relationship between the differential characteristics of an S-box and a upper bound on the
nonlinearity of the S-box. The usefulness of such an explicit relationship is obvious: the
nonlinearity of an S-box represents a key indicator for the strength of a block cipher that
employs the S-box. We also compare our result on the relationship with a related theorem
in [7].

We begin with examining the leftmost column of the difference distribution table of an
S-box (not necessarily regular).

Lemma 5 Let F be a mapping from V,, to Vi, and K is the difference distribution table

of F. Then the leftmost column of K is determined by a 2™-partition of V,,, say V, =
QoU---UQgm_y, that satisfies the condition that Q; N, = ¢ for all j # 1.
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Proof. For each B € V,,, define Qp = {a € V,|F(a) = §}. Note that we use an integer in
[0,...,2™ — 1] and a vector in V,, interchangeably. Clearly

Va = Ugev,.Sg (8)

and Qg N Qg = ¢ if B/ # f”. Note that F(z) ® F(z ® ) = 0 if and only if both z and
z @ o belong to the same class, say Qg.

Now we modify the mapping F into F/ by applying an arbitrary permutation on V,, to
the output of F. Clearly the partition in (8) remains unchanged, and F/'(z)® F'(z®a) =0
if and only if both z and z @ a belong to the same class in (8). This proves that the leftmost
columns of the difference distribution tables of F' and F’ are the same. o

To study a n X m S-box, the two parameters n and m alone are not adequate in finding
out detailed information on the S-box. On the other hand, it will be too complex to take
into account all the k; (), Aj(a), or {n;,&)?, for j =0,1,...,2"—1,i=0,1,...,2"—1 and
a € V,. The followmg theorem can be viewed as a compromise between the two approaches
It relates the nonlinearity of a regular n X m S-box to three of its parameters, namely n, m
and the leftmost column of its difference distribution table K.

Theorem 3 For any regular n x m S-bozx F', its nonlinearity satisfies

1 ;/ 923n+2m . 94n 4 22mtn 23;1—1 k%( a'_)
2

Nr < 211.—1 _ =
F= (2n — 1) (21/1. — 1)2

Proof. Multiply both sides of the equality in (iii) of Theorem 3 by e, where e denotes the

all-one sequence of length 2™,

ﬁ _lgzpﬁo)z :o(ao) ’,:1(010) oo kam_1(c) 2™
,41) - K o(o) 1(:011) cer kgm_y(0n) 0 ©)
IRy 1(nj,£2n_1)2 ko(on—1) k1(a;n—1) oo kom_3(agn_1) 0 |
Hence k
Ezm—l(ﬂg,fo)z ko(x) _
P | g, | e w
i (ﬂj:fzn—l) ko(cr2n 1)

Multiply the transposes of the two sides in (10), we have

2m-—1 2m—1 2m—1 2"—1

(D2 M o)+ (3 i 8)®)? -+ (D s lon—1)H)? = 227" 37 ki) (11)
j=0 j=0 j=0 i=0

Since both g and £y are an all-one sequence, we have (70, £o) = 2".

Recall that F' is regular. By Lemma 2, each nonzero linear combination of the component
functions of F' is balanced. Thus for j = 1,...,2™ — 1, 5; is (1,—1) balanced and we
have (n;,£0) = 0. Also since ¢; is (1,—1) balanced for j > 0, we have (ng,4;) = 0 for
j=1,...,2%—1.
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Note that kg(ag) = 2. So (11) can be specialized as

2m -1 2m—1 2n—1
( E (nj,£1)2)2 Joo 4 ( Z (nja‘eZ" _1>2)2 — 221n+3n _ 24n + 22m+n Z kg(a,) (12)
j=1 j=1 i=1

Thus there is a ig, 1 £ 9 < 2™ — 1, such that

2%1< » )2 > 93n+2m __ 94n 4 92m+n Zf;; 1 kg (a,-)
o Nirtiel = m 1

Furthermore there is a jg, 1 £ jo < 2™ — 1, such that

2n..]
231L+2m — 24n + 221n+n 2:':1 kg(at)

I(’?joalion 2 (/ (2= -1)(2™ - 1)2

Now the theorem follows immediately from Lemma 1. O

The significance of Theorem 3 lies in its generality: it applies to all regular S-boxes that
have more input bits than output bits.

Before closing this section, we note that a paper by Chabaud and Vaudenay [7] is a
prior work most relevant to this research. The main result in [7] is their Theorem 4 which
is equivalent to stating that for every mapping from V,, to V,,, say F, the nonlinearity of
F, Ngp, satisfies

22" —-1)(2~1-1)
- 9m 1 ) :
Examining the expression under the square root in the above bound, one can see that it is
negative if m £ n — 2. Therefore, a condition for the validity of the theorem, which has
not been spelled out in their paper, is that m 2 n — 1. The same un-spelled condition of
m 2 n —1 is also implied in Lemma 4 in the same paper, and hence its proof presented in
the paper should be corrected.

fe

NF é 211.—1 . %(3 9" _ 9

7 Concluding Remarks

We have proved that there exists no quadratic n X m S-box with a UHODDT when n 2
2m —1, which acts as evidence that further supports the conjecture on the non-existence of
an n X m S-box with a UHODDT for all n > m. We have also proved a tight lower bound
on the differential uniformity of an S-box, and an upper bound on the nonlinearity of an
S-box that serves as an bridge between the nonlinearity and differential characteristics of
the S-box.

The technique used in proving the non-existence result is essentially similar to that
used in [22]. This technique, however, seems to have its limitation in that it may not be
applicable to a research topic that deserves immediate attention in light of the progress
made in this work, namely proving the non-existence of higher-degree S-boxes.
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Abstract— In this paper we study the security of Substitution Permutation Encryption Networks
(SPNs) with randomly selected bijective substitution boxes and a randomly selected invertible
linear transformation layer. In particular, our results show that for such a 64-bit SPN using
8 x 8 s-boxes, the number of s-boxes involved in any 2 rounds of a linear approximation or a
differential characteristic is equal to 8 with probability exceeding 0.8. For these SPNs the number
of plaintext/ciphertext pairs that are required for the basic linear and differential cryptanalysis
exceeds 2%* within 6 rounds. We also provide two construction methods for involution linear
transformations based on Maximum Distance Separable Codes.

1 Introduction

Heys and Tavares [3][4]1[5] showed that replacing the permutation layer of Substitution
Permutation encryption Networks (SPNs) with a diffusive linear transformation improves the
avalanche characteristics of the cipher and increases the cipher’s resistance to differential and
linear cryptanalysis . Linear [8] and differential [1] cryptanalysis are two of the most powerful
attacks on block ciphers. In particular it was shown [3][4] that with such a linear transformation
we can develop upper bounds on the differential characteristic probability [1] and on the
probability of a linear approximation [9] as a function of the number of rounds of substitution.
These bounds are achieved by choosing the linear transformation in such a way that we can
have a lower bound on the number of s-boxes involved in any 2 rounds of a differential
characteristic or linear approximation expression. Letting /N represent the block size of an SPN
consisting of R rounds of » X n s-boxes (M per round), a simple example of an SPN with
N =16, n=4,M = £ = 4, and R = 3 is illustrated in Figure 1.

An interesting class of linear transformations is the one based on Maximum Distance Separable
(MDS) codes [7]. The use of such linear transformations was first proposed by Vaudenay in
[13] and then utilized in the cipher SHARK [12] and later in the cipher SQUARE [2]. This
class of linear transformations has the advantage that the number of s-boxes involved in any 2
rounds of a linear approximation or in any 2 rounds of a differential characteristic is equal to
M + 1 which is the maximum theoretically possible number.

In this paper we study the security of SPNs with randomly selected n-bit bijective substitution
boxes and a randomly selected linear transformation layer over GF(2"). We also provide
two construction methods for involution linear transformations based on Maximum Distance
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Separable Codes. Involution linear transformations have the advantage that the resulting network
can be used to perform both the encryption and the decryption operations [16].

Rijmen et al [12] noted that the framework of linear codes over GF'(2") provides an elegant way
to construct the linear transformation layer. More details about the theory of error correcting
codes can be found in [7].

Let C be a (2M, M, d) code over GF(2"). Let G = [I|A] be the generator matrix in echelon
form where A is a nonsingular M X M matrix and I is the M x M identity matrix. Then A
defines an invertible linear mapping

GFM - R . X Y = AX. (1)

If the matrix A is used in the implementation of the linear transformation of the SPN, then it is
easy to see that the number of s-boxes involved in any 2 rounds of a differential characteristic or
linear approximation expression is lower bounded by d, the minimum distance of the code [12].
The minimum distance of the code is equal to the minimum number of linearly dependent
columns in its null matrix (also known as the parity-check matrix). For an MDS code with
parameters (2M, M, d), the minimum distance d is equal to M + 1. Throughout this paper we
assume that M is an even number.

2 Randomly Selected Linear Transformations
Lemma 1
Let G = [I|A] be the generator matrix of a code in echelon form where A is a randomly selected

M x M nonsingular matrix and I is the M x M identity matrix with elements over GF(q), g = 2".
Then the probability that this code has a minimum distance d > r, 2 <r < M + 1, is lower
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bounded by

w(ﬁll,q)ﬁ (qM_rZ—f(M-}—jz'—l)(q_l)j_ ’il (z‘;l)(q_l)j), @

=1 j=0 j=r—
where
M-1 . :
U(M,q) = [] (qM —q‘) 3)
1=0

is the number of nonsingular M x M matrices over GF'(q).

Proof: If G = [I|A] then the null matrix H is given by
H = [-4T|1] = [A"]1] @)

since we are working over GF(2"). It is clear that as A varies over all possible nonsingular
matrices, AT varies over the same set. We construct the matrix AT column by column to
meet our criterion.

The columns of AT must not equal any linear combination of up to r — 2 of the other columns
of H, and, for AT to be invertible, no column of AT should be a linear combination of the
other columns of AT.

Suppose we have already assigned : — 1 columns of AT, We may choose any of the ¢
possibilities for column ¢ except the

[ M+i-1 ; '
Z( . )(q—l)’ (5)
=0 I
linear combinations of up to r — 2 of the M + ¢ — 1 assigned columns of H and the
i-1 .
t—1 ;
> ( . )(q—l)’ O ®
j=r—1 J

linear combinations of known columns of AT not counted in (5).

Note that the combinations counted in (5) and (6) may not be distinct. Thus, the number of
choices available for column ¢ is at least

qM—g(MJrji“l)(q—l)"— i (i;1>(q—1)j @

j=r—1

and hence the number 6f choices of A is at least

Il (qM—f(M"*j“l)(q—l)f— Z (He-v) ®

=1 7=0 j=r—
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The lemma follows by dividing the expression above by the total number of nonsingular M x M
matrices over GF(q). O

O’Connor [11], and Youssef and Tavares [15], [14] studied the XOR distribution table and the
Linear Approximation Table (LAT) properties of randomly selected bijective s-boxes. From
the analysis in [11], [15] and [14] the expected value of the maximum XOR table entry of
an 8 x 8 randomly selected bijective mapping A is less than or equal to 12 and the expected
nonlinearity A'L is greater than 92.

Using an approach similar to the analysis in [4], it is possible to establish upper bounds on
the most likely differential characteristic and linear approximation expression using a randomly
selected SPN for which the number of s-boxes involved in any 2 rounds of a differential
characteristic is greater than or equal to d. The results are obtained by assuming that all the
round keys are independent.

The number of chosen plaintext/ciphertext pairs required for differential cryptanalysis of an R
round SPN (based on the best characteristic and not the best differential [10], [6]) may be
approximated by [1], [4]

1

Np > ——
D Z (Ps)a’

€))
where P; = £ and

aZd(g——l)-{—l. | (10)

Similarly, the number of known plaintexts required for the basic linear cryptanalysis (algorithm
1 in [9]) may be approximated by [4]

1

L2 W (11)
where .
P = 2”_12—7‘/5 (12)
and
- (13)

Letting Ry and Rp denote the minimum even number of rounds required so that Nz and Np are
greater than 24, Table 1 shows Ry and Rp as a function of d for n = 8, A = 12 and N'L = 92.
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d : 4 5
Ry 10 10
Rp 10 8 8 6

Table 1 Ry and Rp as a function of d (n = 8, A = 12 and N'L = 92)

Table 2 shows the theoretical lower bound (equation (2) ) as well as- the experimental result
(sample size = 10°) for the probability of picking a random invertible linear transformation,
with n = M = 8, for which d is lower bounded by r, 4 < r < 8

r 4 5 6 7 8

Theoretical 1-1.58x1072 11 -151x10"° |1-9.78x1077 |1—4.66x10"* }0.839
bound (eqn. 2) ’

Experimental 1.0 1.0 1.0 1—4.6x10"* 0.844
(Random)

Experimental 1.0 1.0 1.0 1-1.18 %103 0.922
(Involution)

Table 2 Lower Bounds for P(d > r) for a Randomly Chosen Linear Transformation (r = M = 8)

3 Involution Linear Transformations based on MDS codes

In general, SPNs need two different modules for the encryption and the decryption operations.
In an SPN, decryption is performed by running the data backwards through the inverse network
(i.e., applying the key scheduling algorithm in reverse and using the inverse s-boxes and the
inverse linear transformation layer). In [16] the authors proposed a special class of SPNs that
has the advantage that the same network can be used to perform both the encryption and the
decryption operations. The basic idea is to use involution substitution layers and involution
linear transformations. In this section we study two construction methods for involution linear
transformations based on MDS codes.

For a linear (n, k,d) code over any field, d < n — k + 1. Codes with d = n — k + 1 are called
Maximum Distance Separable Codes, or MDS codes for short [7].

Lemma 2[7]:

An (n,k,d) code with generator matrix G = [I|A], where A is a k X (n — k) matrix, is MDS
if and only if every square submatrix (formed from any : rows and any z columns, for any
i=1,2,---,min{k,n — k}) of A is nonsingular.
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3.1 Random Construction

One way to obtain an involution matrix A which satisfies the above constraint is to pick a
random involution matrix and test it for the above constraint.

Let R '
A= |[An A } 14
[A21 Ago (14)

be an M X M random matrix where Aj;, A1, A2; and Ayy are nonsingular —A} X -A% matrices.
An involution matrix is one which satisfies A2 = I, and thus A is an involution iff

AnAgp @ AjpAz =0, : (15)
AL ® AppAn =1, (16)
An Ay @ ApA2 =0, (17)
Ag1Ar ® Ay = 1. (18)

If we let Az = Ayq then equation (15) is satisfied iff A;; and Aj2 commute with each other.
To achieve this we let Ajp = Al_ll. For thesechoicés of Aj2 and Ajg, equations (16), (17) and -
(18) are linearly dependent with the solution Az; = A}; @ An.
Thus the M x M matrix S
A1l A7
A= n 19
[Ail ® Al An : (19)

where Aj; is a random nonsingular %l- X %i matrix, is an involution over GF(2").

For n = 8, a random search for a matrix A, with the structure in equation (19), that satisfies
the condition in lemma 2, terminates within a few seconds for even values of M, M < 6.
For M = 8 we were unable to obtain any matrix that satisfies the conditions in lemma 2 by
random search. Table 2 shows the experimental results for 10° randomly chosen involution
linear transformations in the form of equation (19) for M = n = 8.

3.2 Algebraic Construction

In this section we show how to obtain an involution matrix satisfying lemma 2 by a simple
algebraic construction.

Lemma 3[7]:
Given Xg,* - ,Xn—,, and ¥y, -+, Yn—. the matrix A = [a;;],0 < 7,5 < n—1 where a;; = ;1;),—1
is called a Cauchy matrix. It is known that
. (x; = xi)(y; — ¥i)
det(A) = =22 (20)
4) I (xi+y;y)
0<i,j<n—1
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Hence, provided the x; are distinct, the y; are distinct, and x; +y; # O for all i, j, it follows
that any square submatrix of a Cauchy matrix is nonsingular over any field.

Let
=k (21)
yi=10r,
where .
i=(00---0i,--itig) € GF(2"), > 2 =i,7 = [logapr] — 1, (22)
1=0
and the least significant log2(M) bits of r # O are zeros.
For A? = H = [h;;] we have
@ A@l ‘l;‘l"‘?', 1= (23)
ieoker) (JGBkEBr) 5;__0(@-) it
vs’llhere i,j and k are evaluated as in equation (22). Thus the matrix A will satisfy A% = ¢*I, ¢ =

& a2; over GF(2"). Dividing (division over GF(2")) each element of A by
~ 11

|
@f

@ a,i, (24)

we obtain an involution matrix for which every square submatrix is nonsingular over GF(2").
Figure 2 shows an example for M = n = 8, using the irreducible polynomial 11d'.

k=0

93 13 57 da 58 47 ¢ 1f
13 93 da 57 47 58 1f ¢
57 da 93 13 ¢ 1f 58 47
da 57 13 93 1f ¢ 47 58
58 47 ¢ 1f 93 13 57 da
47 58 1f ¢ 13 93 da 57
¢ 1f 58 47 57 da 93 13
1f ¢ 47 58 da 57 13 93

Figure 2 Involution Linear Transformation Based on MDS Codes (M = n = 8, Irreducible Polynomial = 11d)

¥ All numbers are in hexadecimal format
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Conclusions

In this paper we studied SPNs with randomly selected s-boxes and a randomly selected invertible
linear transformation layer. The results of our analysis show that SPNs with good cryptographic
properties can be obtained using this random construction approach. Although this random
construction can be used to implement an actual cipher, the analysis in this paper was aimed
to prove the robustness of the SPN model.

We also provided two construction methods for involution linear transformations based on MDS
codes. Involution linear transformations have the advantage that the resulting network can be
used to perform both the encryption and the decryption operations, which enhances the practical
aspects of this the class of SPN ciphers.
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