On the Construction and Upper Bounds of Balanced and

Correlation-immune Functions
Markus Schneider

University of Hagen, Lehrgebiet Kommunikationssysteme,
58084 Hagen, Germany
email: mark.schneider@fernuni-hagen.de

Abstract: Correlation-immunity, as a property of Boolean functions, is an im-
portant criterion in the context of pseudo-random sequence generation for stream
cipher systems. In this paper, an efficient algorithm for the construction of correla-
tion-immune functions is given. It will be shown that the proposed algorithm pro-
vides a method to construct every mth order correlation-immune function. Besides
correlation-immunity, also other properties of Boolean functions, like balance, can
be taken into account in the construction. Because of the relevance in crypto-
graphic applications, the focus will be on balanced correlation-immune functions.
The complexity analysis of the proposed algorithm leads to a new upper bound for
the number of balanced correlation-immune functions, depending on the number
of input variables n and the order of correlation-immunity.

1 Introduction

Stream cipher systems use random sequences for the encryption of a message stream. In prac-
tical use, these random sequences are generated by a machine which works deterministically.
These machines have to be well designed in order to avoid known methods of attacks, e.g. cor-
relation attacks (see [Sieg 84], [Sieg 85]). Siegenthaler introduced the property of correlation-
immunity for functions whose output do not give any information about their input to a certain
degree. Correlation-immune functions are applied in the design of random sequence genera-
tors. The combiner generator is a well-analyzed machine for random sequence generation, be-
cause it allows the control of some cryptographically relevant properties like Linear Complexity
[RuSt 85], for example. The combiner generator consists of n binary sources whose outputs are
combined by a memoryless Boolean combiner function f: GF(2)" — GF(2), z — f(z). Each
binary source is controlled by a secret key. If the combiner function is not properly chosen,
there is a possibility to attack the key of each binary source separately and independently of
the keys of the other binary sources. A memoryless function f is said to be correlation-immune
of order m, with 1 < m < n, if the output of f and any m input variables are statistically
independent. More formally, if we think of the output of the binary source ¢, 1 < i < n, to be
modelled as a random variable X;, a function f is mth order correlation-immune if the mutual
information between the function output and any subset of m elements X;,,...,X;, of then
input variables is zero, with 1 < ¢; < ... < i, [Sieg 84]:

T(f(X1s- .., Xn); Xiyy - r Xi,) = 0. (1)

Ghuo-Zhen and Massey pointed out that the Walsh transform of an mth order correlation-
immune function has some specific properties, which is sometimes used as alternative defini-
tion of mth order correlation-immune functions [GuMa 88]. Proposals for the construction of

73

correlation-immune functions were given in [Sieg 84], [CCCS 91] and [SeZh 93]. In this paper,
a completely new approach to the construction of correlation-immune functions is presented.

Another relevant property of Boolean functions is balance. A function f is called balanced,
if its output probabilities are equal, i.e. P(f(:c) 0) = P(f(z) =1) = 0.5. Beside others,
balance as property of the Boolean function is a necessary condition for the generation of a
balanced sequence.

2 Relevant properties of correlation-immune functions

The following definition and theorem are of great importance in the context of the construction
method of mth order correlation-immune functions presented in the next section. Only those
properties of correlation-immune functions with paper related relevance are introduced.

Definition 2.1 Let n > 0 .be an integer. The set of all (z1,...,%a) with z; € {0,1} is called
an n—cube. ‘ :

Let I be a subset with k elements of the index set {1,...,n} of the n—cube: I = {i1,...,%}.
For every j ¢ I, let a; € {0,1} be constant. The set {(z1,...,24)} with z; € {0,1} fori € I
and z; = a; fixed for i € I will also be called a k-cube. -

Theorem 2.1 The function f : GF(2)" — GF(2), £ — f () is mth order correlation-immune
with1 < m < n, if and only if the binary output a, a € GF(2), appears in all (n-m)-dimensional
subcubes of the n—cube with the same frequency K, 0 < K <2"~™. :

Proof: = Suppose a appears in all (n — m)— dlmensmnal cubes with frequency K. Then,
there is P(f(z) =a I Ti, =0a1,...,%,, =am) = K -2™7", with a; € GF(2). The frequency
of a in the n—cube is obta.med by summing up over all 2™ disjunct (n — m)~—dimensional
cubes. This yields P(f(:c) =a) = 2™ . K -2"". Obviously, P(f(z)=a) = K -2™"" =
P(f(z) = a| =z, = a1,...,%i, = am), which means, that the value of f(:c) and every. choice of
m elements out of {z1,...,2,} are statistically mdependent Then, f is correlation-immune of
order m. ‘ ‘ B
< Let f be correlation-immune of order m. Then, there is

P(f(z)=alzi,=0,...,2;, =0)=
P(f(.al):alzil-_-0,...,12,'”:1):
P(f(£)=a|:vil=1,...,zim#1)=

P(f(z) =a).

By this result, we can conclude that the value a appears in all 2™ (n — m)—dimensional cubes
with the same frequency. O

In cryptographic applications, the mth order correlation-immune functions which are also
balanced are of particular interest. For those, K = 2"~™~1.

74

3 Construction of mth order correlation-immune func-
tions

In the following, an algorithm for the construction of mth order correlation-immune functions
with n binary input variables is presented. The algorithm is mainly based on theorem 2.1. If
the binary value ’1’ assigned to the vertices of an (n — m)-cube, lying in an n-cube, appears
with frequency K within this (n — m)-cube, we will say that the K-condition is fulfilled. If K is
chosen to be K = 2°~™~1 then the constructed function is also balanced. The application of
algorithm 3.1 yields always one function with the desired properties. The assignments and the
selections of (n — m)-cubes with minimum number of free vertices are controlled by the output
of a random generator. This ensures that the output is able to construct distinct functions.
Within the algorithm, parameter j describes the number of taken decisions if there are different
possibilities of doing the assignments, all of them fulfilling the K-condition. To apply the
algorithm, it is necessary to choose appropriate n, m and K.

Algorithm 3.1
1 j:=1

2. select an (n — m)-cube, assign binary values to its vertices in a way fulfilling the K-
condition, and note the assignment in a listing

3. if there exists an (n — m)-cube not considered before with no degrees of freedom to fulfill
the K-condition for the assignment of the values 1o the veriices, then

(e) assignment of the binary values to the vertices fulfilling the K-condition in the -con-
sidered (n — m)-cube
(b) if the K-condition is not fulfilled in all (n — m)-cubes, then
i. note assignment no. j to be bad and cancel the assignment no. j
ji=j—1
else
. notle assignment no. j§ tn the listing
tt. go to step 8

4. if there still exist vertices in the n-cube without assignment, then

(a) select an (n — m)-cube with minimum number of free vertices
(b) j:=5+1
(c) if there ezists at least one possibility for the assignment io‘ the vertices of the (n—m)-
cube which is not noted in the listing to be bad, then
t. assignment of the binary velues to the vertices fulfilling the K-condition in the
(n — m)-cube in this way, as not noted in the listing to be bad
1. note assignment no. j in the listing
1. if the K-condition is not fulfilled in the other (n — m)-cubes, then
A. note assignment no. j to be bad and cancel the asszgnment no. j
B. go to step 4c

75

else
A. go to step 3
else
i gi=ged
ii. note assignment no. j to be bad and cancel the assignment no. j
i1i. delete the notes with atiribute ’bad’ and no. k for allk > j
1. go to step jc

else
end.

The result of the algorithm is an n-cube with all its vertices assigned a binary value. This
can be easily translated into Boolean algebra or in the algebraic normal form (ANF) defined
over GF(2). In general, the ANF is preferred in literature.

Theorem 3.1 Algorithm 3.1 is a method to construct all functions f : GF(2)" — GF(2),z —
f(z), having the property of correlation-immunity of order m with0 < m < n.

Proof: By theorem 2.1, all mth order correlation-immune functions with n input variables
satisfy the K-condition in all (n — m)—dimensional cubes with K = 2"~™~1, Depending on the
assignment in the first (n — m)—dimensional cube at the start of algorithm 3.1, all functions
having the same vertex assignments in the first (n—m)—cube can be constructed obeying the K-
condition in all further steps. This is valid for all combinatorial possibilities of the assignments
in the first (n — m)—cube. Applying the method of algorithm 3.1, all these functions can be
found fulfilling the K-condition in all (n — m)—dimensional cubes. By theorem 2.1, this yields
all mth order correlation-immune functions. O

Fig. 1 : Structure of the graph representing the construction

The construction method given in algorithm 3.1 can be looked at in a graph theoretic way.
Decisions with degrees of freedom are represented as branches; states within the construction,
having alternative possibilities for the assignment of the binary values to the vertices of the
(n — m)-cube, are the nodes. Only those phases in the n-cube during the construction are to
be understood as states (nodes), which have degrees of freedom for further assignments. Nodes
with no possibility of choosing an assignment to fulfill the K-condition have no branches. The
graph induced by the construction method is directed and free of cycles. There are nodes which
can be reached by more than one path. Fulfilling necessary conditions of mth order correlation-
immune functions step by step in a depth first search manner, the application of algorithm 3.1
is more efficient than exhaustive search.

76

4 Complexity considerations

In this section, we will focus on the complexity aspects of the construction in algorithm 3.1.
Here, our main interest is on two parameters. The first parameter is the maximum possible
value of parameter j in algorithm 3.1 which leads to the maximum number of good decisions,
that have to be taken to construct an mth order correlation-immune function with n input
variables obeying the K—condition, where ’good’ means the contrary of the term ’bad’ which
was used in algorithm 3.1. The second parameter is an upper bound of the frequencies to find
(n — m)—cubes with certain numbers of free vertices in algorithm 3.1. With this parameter,
the maximum number of branches at a node in the graph representation can be calculated. An
exact mathematical description of algorithm 3.1 seems to be complicated. This is the reason for
analyzing algorithm 3.1 in a modified manner. In the modification, the K-condition is dropped
and the vertices of the n-cube are only marked instead of assigning binary values to them. The
set of marked vertices will be called A.

Algorithm 4.1
1 A={)

2. select an (n — m)-cube and mark its vertices, marked vertices becoming elements of A
3. if not all vertices of the n-cube are elements of A, then

(a) select an (n — m)-cube € A with minimum number of vertices not in A, vertices of
the (n — m)-cube becoming elements of A

(t) goto 3
4. end

The gradual marking of vertices of the n-cube done in algorithm 4.1 shows all the paths
through the n-cube which are possible obeying only the minimality condition of algorithm 3.1.
In general, with the application of the K-condition, algorithm 3.1 has stronger requirements.
So, applying algorithm 3.1, there are no paths through the n-cube, which are not included in
the set of all paths, applying algorithm 4.1. As already mentioned, the parameter j gives the
number of decisions for the assignments applying algorithm 3.1. In algorithm 3.1, decisions
are only possible if there are degrees of freedom, and these can only exist if the (n — m)-cube
obeying the minimality condition has at least 2 vertices for assigning binary values. So all we
have to do is counting the events, applying algorithm 4.1 when the set A is growing by at least
2 elements. This leads to an upper bound denoted by H(n,m) for the parameter j in algorithm
3.1.

Now, for the sake of simplicity, we introduce an expression for the set of vertices of an
n—cube, which are inducing a k—cube with 0 < k¥ < n. Consider a k—cube, given by the
index set I = {iy = 1,...,4 = k}. This k—cube is identified by the set {(z1,...,zs)|(z; €
GF(2), if j € I) and (z; = aj, with a; € GF(2) fixed, if j ¢ I)}. In the further considerations,
this k—cube will be described by (z1...., 2k, Gp41,...,an).

Theorem 4.1 Letl < j < n and let the index set I = {iy,...,1;} C {1,...,n} induce a j—cube
A={(z1,...,24) | (i € GF(2), ifi € I) and (z: = a;, with a; € GF(2) fized, if i ¢ I)}.
Furthermore, let 1 < k < j. Given the indez sets I1, I, with k elements, with Iy ¢ I, I, ¢ I,
LNIT#{}, bNI#{} and |LNI|=|LNI|+1, which are inducing the k—cubes A, and As.
Then, there is |AU A;| < |AU Aa|.

77

Proof: Let £ = k' + & with k/,k” > 0. Consider the following cubes, without restriction of
generality.

j—cube A (#1,++,%j, 8541, +,an)
k — cube A1 (al, PR (T2 TN PR 7 N T PP ES IES PY T 2N PR a,,)
k — cube A2 (a1, NS 2 15 LPE 700 TNE PRRPE - FN TP /B TN PR an)

We have |A| = 2/ and |4;| = |A3| = 2%. The k—cubes A; and A; can be obtained by the union
of (k" + 1)-cubes, respectively k"-cubes:

A = (G100, 0k, T kty e B pki=1, Gkt o -, n)
= (ah'":aj—k“—lazj—k“’-'"zjaa'j+la"')aj+k‘—1;aj+k’1"':an)
U
(al,...,a_,-_ku_l,xj_ku,...,:cj,aj+1,...,aj+k:_1+l,aj+k/,...,an)
U
U
(@1, @jepnot, Tjopry oo i 05401+ 1, @iqkm1 + 10548, . .0, Gr)

The first (k" + 1)—cube on the right side in the preceding equation is completely containe<,i, in
A. All others (k" +1)—cubes have no elements in common with A. A (k" +1)—cube has 2k +1
elements. Hence, there is |[AU A;| = 27 4 2F — 2F"+1,

Az = (@1, @k, Tjprg1y e oy Tipkt, Gipkigly - - -y Cn)
= (ala'“1aj—k”,zj—k"+1)--'axj:aj+1)'"3aj+k’aaj+k'+1:"'1an)
U
(@1, ey @ty Tjm kg1, ey Bjy Qi1 - o oy Gk + 1, G 4keg1, - -,)
U
U

(al, SR TN 10 VAR IR T TRR I o PRI RS Y o 1,48y an)

The first k’"—cube on the right side in the preceding equation is completely contained in A. All
others k”—cubes have no elements in common with A. A k”—cube has 2¥" elements. Hence,
there is |[AUAy| = 2/ +2¥ — 28", Comparing the number of elements |AUA;| = 27 4 2% —2F"+1 <
AU Ag| = 27 4 28 — 2¥" we have the desired result. O

Theorem 4.2 Let the vertices of an n—cube contained in the set A induce a j—cube with
k< j<nand k =n—m by dlgorithm 4.1. By the minimality condition of algorithm 4.1, a
k—cube is selected, and A gets new elements. Then the smallest cube, containing all elements
of A, has dimension j + 1, and the number of new elements in the set A is 2F~1.

Proof: Without restricting the generality, consider the j—cube A = (z1,...,2j,8j41,...,an).
By theorem 4.1 it is known that the smallest cube containing the union of A and a k-cube given
by the minimality condition of algorithm 4.1 is a (j + 1)-cube, for example (z1,...,Z;+1, @j+2,
..., 8p). This (j + 1)—cube can be splitted in disjunct j—cubes A and A’ = (21,...,2j,0j41+
1,...,a,). By theorem (4.1), the number of new elements coming to A is smallest, if the

78

k—cube is chosen in such a way, that just one of the fixed (n — j) components of the j—cube
becomes variable. Without restricting the generality, we can do the following choice for k—cube:
(al,...,aj+1_k,mj+2_k,...,a:j,zj+1,aj+2,...,a,.). This k—cube can be splitted in two (k —
1)—cubes each having 2%~ vertices:

(a1, BN S B PR RS R PRRRPE S PRI RS PRRRS a,,)
U @)

(al, ey B ik B2~y - - Ly B4 T 1,.. .,a,.).

The upper (k — 1)—cube in (2) is completely contained in A. The lower (k — 1)-cube in (2) and
A have no elements in common. So, A gets 2! new elements by selecting this k—cube. Such
a k—cube exists for all j with k < j<n. O

Theorem 4.3 Consider a (j + 1)—cube with k < j < n in the contexst of algorithm 4.1, having
one half completely in A, while the other half is not completely in A. Then there exists always
at least one k—cube which brings not more than 2¥~1 — 1 new elements to A.

Proof: Given a j-cube and a (j + 1)-cube: (21,...,2j,8j41,-.+,8n) C A C(21,--., %}, Tj41,
@j42, .- -,8n). Consider the vertex (a1,...,a5,8541+1,8542,-. ., a,) which is supposed to be in
A, but not contained in the j—cube. There exists always a k—cube, containing this vertex and at
least 28— 1 further elements, which are already contained in A: (a1, ..., 85 k41, Tj—k+25- - » Tj+1,
@j4+2;---,an). Therefore, the number of vertices becoming elements of A can not be greater
than 2%-1 — 1. This method can be applied to all k-cubes not completely contained in A until
all elements of the (j + 1)—cube are contained in A. D

Theorem 4.4 Given an n—cube whose vertices are processed by the instructions of algorithm
4.1. Within the application of algorithm 4.1, the n—cube runs always beside others through
these siates in which the number of the elements of set A equals to a power 27 with k < j < n.
Furthermore, these % elements of set A always induce an n—cube. -

Proof: The proof follows by induction referring to theorems 4.2 and 4.3.

§ = k: The number of elements in A is 9% These elements are the vertices of a k—cube.

j — j+1 with j < n: Let A contain 97 elements inducing a j—cube. The application of
algorithm 4.1 requires the selection of a k—cube described by theorem 4.2, where the number
of new elements in A is 2¥=1. In the further steps, the application of algorithm 4.1 is described
by theorem 4.3 until A induces a (j + 1)—cube. Then A contains 29t1 elements. O

With the results of theorems 4.2 - 4.4, we have described the possible paths through the
n—cube in algorithm 4.1. Theorem 4.4 says that if A contains 27~1 elements, then these induce
an (n — 1)—cube. '

In the following, we will see how the consideration of the interesting complexity parameters
concerning the application of algorithm 4.1 with given n and m can be decomposed into double
application of algorithm 4.1 with n’ = n—1, m =m—-1,andn” =n—-1, m" =m -1,
respectively.

Theorem 4.5 Given 1 < m < n. Let an n—cube be processed by the instructions of algorithm
4.1, while adding vertices of k—dimensional cubes to A. Furthermore, let k=n-—m. If the

79

application of algorithm 4.1 is considered as long as |A| < 271 then this has the same result
as application of algorithm 4.1 to an n'—cube withn' =n—1 and m' =m — 1.

Proof: By the result of theorem 4.4 it is known that the smallest cube containing A as long as
|A] < 2*~! is a (n — 1)-cube. Within algorithm 4.1 with given n and m, vertices of a k—cube
with & = n — m become elements of A. As long as [A] < 2°~1, all the k-cubes lie completely
within the (n — 1)-cube. This is equivalent to applying the algorithm 4.1 with n’ and m'. With
k=n—mand k= n'—m', we have n — m = n’ — m’, and because of n’ = n — 1, there is
m'=m-1.0

We conclude that with the notation of theorem 4.5 the application of algorithm 4.1 with
n, m as long as |A| < 2*~! and its application with n’, m' yield the same maximal number of
events when the set A4 is growing by at least 2 elements. Furthermore, also the frequencies of
adding specific numbers of elements to A are equal. In the next two theorems, it will be shown
that there exist similar properties concerning the application of algorithm 4.1 with n, m when
27-1 < |A| < 2" and the application with n” =n—1, m" = m.

Theorem 4.6 Given 0 < m < n — 1. Let an n—cube be processed by the instructions of
algorithm 4.1 and let 2"~! < |A| < 2™. Let A’ be an (n—1)—cube completely contained in A. If
there ezists a k—cube W', with k = n—m and A'0¥ = { }, fulfilling the minimality condition
while adding its elements to A, then there is always a k—cube ¥ with |A' N ¥| = 2%, also
fulfilling the minimality condition.

Proof: By assumption, A consists of a (n—1)-cube A’ and further vertices, which are combined
in a set ©. There is © N A’ = { }, and by theorem 4.2 we know, that [©] > 2¥~1. Then, the
number of new elements coming to A applying algorithm 4.1 is always smaller than 2F-1, by
the result of theorem 4.3. There is A = A'UO # (z1,-.. ,Zn). Suppose A' = (£1,...,%n—1,0n)
and ¥ = (@1,...,8n—k—1,Zn=k, - -, &n=1,8n + 1), which are disjunct. Furthermore, suppose
that the new elements of A resulting by adding vertices of ¥’ to A lie in a (k —1)-cube, given by
(@1,---yQn—k—1,8n—k; Tn-k41s- - -, Tn-1; 8 + 1). All other elements of ¥’ lie completely in ©.
A k—cube ¥, with YN’ = (a1, ...,8n-k—1,0n—k; Tn-k+1; - - -, £n—1, @ + 1) and half of its ele-
ments completely contained in A’, can always be found with ¥ = (a3, ..., Gn—k; Tn—k41y- - -5 Tn)- -
If the growth of A by adding the elements of ¥’ is minimal, then also the growth by adding the
elements of ¥ is minimal. O

Theorem 4.7 Given 0 < m < n — 1. Let an n—cube be processed by the insiructions of
algorithm 4.1, while adding vertices of k—dimensional cubes to A. Furthermore, letk =n—m.
If the application of algorithm 4.1 is considered from the step, when 2*~! < |A| < 27, then the
result is the same as application of algorithm 4.1 to an n"—cube withn” =n—~1 and m" = m.

Proof: By theorem 4.4 we conclude that the vertices not contained in A induce an (n—1)—cube,
if A contains exactly 2"~! elements. By theorems 4.2, 4.3 and 4.6 we know that there always
exist such k-cubes fulfilling the minimality condition of algorithm 4.1 and having at least one
half in a (n — 1)-cube which is completely contained in A. Each half of this k-cube can be
considered as a (k — 1)—cube. With k—1=n" —m", k = n—m and n” = n — 1, we have
m'=n"-k4+l=n—-1-k+l=n-k=m. O

This allows to consider H as a function of n and m and to construct H recursively for
l<m<n-1: ' : '

80

H(n,m)=H(n—-1m-1)+ H(n—1,m). 3)

The recursion can only be applied when m < n —1 and m > 1. Therefore, H(n,m) has to
be calculated separately for the cases m=1land m=n— 1.

Theorem 4.8 Let n > 2 and m = n ~ 1. Then application of elgorithm 4.1 to an n—cube
results in Hn,m=n—1)=1.

Proof: In the case n > 2 and m = n—1, the k-cubes have dimension k = n—m =n—n+1 = 1.
An 1-cube has 2 vertices. Choosing an 1—cube at the beginning of algorithm 4.1, then, by the
minimality condition, all further 1-cubes have only 1 vertex not contained in A. Because
H(n,m) is the number of events when the set A is growing by at least 2 elements, we have
Hnm=n-1)=1.0

Theorem 4.9 Let n > 2 and m = 1. Then application of algorithm 4.1 to an n—cube results
inHnom=1)=n-1.

Proof: Without restriction of generality, consider the following application of algorithm 4.1:

step cube
1. (n — 1)~ cube (z1y.-+rTn—1,08n)
2. (n—1)— cube (21y--+,Tn-2,8n-1,Zn)
3. (n—1)— cube (21,1 Tn=3,8n—2,Tn—1,%n)
(n-1). (n — 1)— cube (21,02,23,...,Zn)
Now, there are still 2 vertices of the n—cube not contained in A: Py = (a3,a2+1,...,8, + 1)

and P; = (a; + 1,a2 + 1,...,a, + 1). Applying the minimality condition of algorithm 4.1, both
vertices become elements of A in two further steps. In each step, there is one element added to
A. Because H(n,m) is the number of events when the set A is growing by at least 2 elements,
we have H(n,m=n—-1)=n-1. 0

With these results, a general description for H(n,m) is possible.

Theorem 4.10 Let n > 2 and 0 < m < n. Then application of algorithm 4.1 to an n—cube
results in:

H(n,m) = (";1) (45

Proof: In the proof, we consider three cases. These are indicated by a, £ and v in the following
figure.

81

.x
@ @
® @ N®

\.

® 606 6
Y

Fig. 2 : Cases o, and v

a))n>2andm=1

H(n,m=1)= (n-1—1> =n—-1
This coincides with the result of theorem 4.9.

B:n>2andm=n—1

n—1

Hnm=n—1)= (”’1)=1

This coincides with the result of theorem 4.8.

9): Let m > 1 and let n > 4 and n > m+ 1. Applying recursion (3) an appropriate number of
times, which is only valid for the conditions of v, we obtain cases that match the conditions of
a and B. In these cases, the recursion can not be applied anymore. But there, the correctness
of the assumption is already shown. The proof is given by induction. Because it is already
shown that the assumption holds for some initial values (see and), all we have to do is to
verify that the step from n to n + 1 holds.

82

® ® O

Fig. 3 : Application of the recursion for H(n,m)

Let H(n,m) = (*7') and consider H(n + 1,m):

H(n+11m) = H(n m—1)+H(n,m):
= G

This is the desired result. O

Definition 4.1 Let 0 < m < n and let ¢ > 0. The function #(c,n, m) describes how often ¢
elements are added 10 A when applying algorithm 4.1 with n and m.

It is obvious that with given 0 < m < n and k = n — m, #(c,n,m) = 0,ifc < 1 or ¢ > 2%.
Therefore, if #(¢,n,m) # 0, then 1 < ¢ < 9%, Similar to theorem 4.10, we can establish a
recursion for #(c,n, m).

Theorem 4.11 Let n > 2 and 0 < m < n. Then application of algorithm 4.1 to an n—cube
results in:

#(e,n,m)=F#(c,n—1,m— 1)+ #(c,n— 1,m). (5)
Proof: The proof follows by theorems 4.1 - 4.7. O

Theorem 4.12 Let 2 < n and m = 1. Applying algorithm 4.1 to an n—cube, there will be the
following frequencies #(c n,m=1) withl1 <c<2*1:

1, ife=2 withi=1...n—1,
#Hle,n,m=1)=< 2, ifc=1,

0, otherwise.

83

Proof: Consider the following application of algorithm 4.1:

step cube growth of A
1. (n — 1)— cube (T1y-++rZn-1,an) gn-1
2. (n—1)— cube (Z15--+rZTn2,8n-1,%n) on—2
3. (n—1)— cube (1, Tn=3,8n-2,ZTn—1,%n) gn-3
(n-1). (n — 1)— cube (z1,0a2,23,...,2n) 2
Now, there are still two vertices of the n-cube not contained in A: P, = (aj,a2+1,...,an + 1)
and P, = (a1 + 1,a3+ 1,...,an + 1). These vertices become elements of A in two further steps

where the growth of A is 1. The desired result follows.O

Theorem 4.13 Let 2< n and m = n— 1. Applying algorithm 4.1 to an n—cube, there will be
the following frequencies #(c,n,m=n—1) with 1 <c < 2"~ 1:

1, ifc=2,
#le,nm=n—-1)={ 2" -2, ifc=1,

0, otherwise.

Proof: Applying algorithm 4.1 with m = n — 1, we have to consider the vertices of 1-cubes. At
the start of the algorithm, there are two vertices becoming elements of A. In all further steps,
the growth of A is only 1. Therefore, we have #(c=2,n,m=n—-1)=1and #(c=1,n,m=
n —1) = 2" — 2. For all other values of ¢, there is #(c,n,m = n— 1) = 0. This is the desired
result. O

Theorem 4.14 Let n > 2 and 1 < m < n. Considering ¢ = 2"~™, applying algorithm 4.1
yields #(c=2""",n,m) = 1.

Proof: At the beginning of algorithm 4.1, the growth of A is given by 2"~™ elements. In all
further steps, there are only such values ¢, which are ¢ = 2"~™~1 by theorem 4.2 or ¢ < gn-m-1
by theorem 4.3. Therefore, #(c =2""™,n,m)=1. O

Theorem 4.15 Let 2<n and 1 <m < n—1. Then #(c,n,m) # 0 only for those c, ifc =27
with j = 0,1,...,(n—m), otherwise #(c,n,m) = 0.

Proof: By theorems 4.5 and 4.7, applying algorithm 4.1 with given n and m can be considered
in a manner of twice applying algorithm 4.1 with n’ = n—1,m' =m-land n” =n-1,
m'' = m. This can be repeated until the conditions of theorem 4.12 or theorem 4.13 are fulfilled.
By these theorems, there are only such growth values ¢, that equal 2/ with j =0,1,...,(n—m).
)

With these results, we can give a general description for #(c = 2/, n, m), which is presented
in the next theorem.

Theorem 4.16 Let n > 2 and 0 < m < n. Furthermore, let j € {1,2,...,(n —m)}. Applying
algorithm 4.1 then yields the following frequencies for adding ¢ = 27 elemenis to A:

#@nm = ("7 ©)

84

Proof: Like in the proof of 4.10, we consider 3 cases. (See figures in the proof of theorem 4.10.)

a)n>2andm=1
In this case, 1 < j < n—m = n— 1. For all those j, we have:

ipmen= ("I (rmI) 2
#2,n,m=1) (1 0 1
This coincides with the result of theorem 4.12.

Bfrn>2undm=n-1
Here, only j = 1 is relevant, because of n — m = 1. For j = 1 we have:

sy (13- ()

This coincides with the result of theorem 4.13.

7): Let m > 1 and let n > 4 and n > m — 1. Therefore, j € {1,2,...,

(n — m)}. Recursion

(5) can only be applied for case 4. Applying this recursion an appropriate number of times, we
obtain case o and 3. The proof is given by induction. The start values are given by cases o

and B. It remains to proof the step from n to n + 1.

Let #(c = 2, n,m) = ("~77%) and consider #(c=2/,n+1,m).

#Fle=Yn+1,m) = #(c,n,m)+#(c,n,m-—— 1) =

—_ n-—J 1)+(n-_1 1) —

(n—j—1)! (n—j—1)!

= (m=-2)(n-j-m+1)! + (m—l)'(n—]—m)' =.

_ (rmi=Dn=DM(nj=1)in=j-mt1)t _

(m-1)(n—-j-m+1)!

— (n—j)! -
(m—Di(n-j-m+1)t —

= (»79)

5 New Upper Bounds

With the result of theorem 4.16, we know how often ¢ = 27 binary elements are assigned to the
vertices of the n—cube within the construction of balanced and mth order correlation-immune

functions while applying algorithm 3.1 to the n—cube. Each k—cube,

k =n—m, has 25¥-1°0’s

and 2F-! ’1’s. The number of possibilities is biggest if the ¢ = 27 free vertices of a k—cube were
assigned 277! ’0’s and 277! ’1’s. This yields an upper bound for the number of balanced and
mth order correlation-immune functions which is summarized in the following theorem.

8

Theorem 5.1 Let 1 < m < n. The number of balanced and mih order correlation-immune
functions with n inpuls is upperbounded by:

3=1

T () i ™

i=1

It has to be noted that this bound is valid for all m and n with 0 < m < n. This result
can be compared to the upper bound presented by Yang and Guo (see figure 4) which gives the
number of 1st order (m = 1) correlation-immune functions [YaGu 95]:

Sy E (D) ®

k=0 r=0
1E+80
1E+70
1E+60 B own upper bound with m=1
1B+50 B2 upper bound by Yang and Guo

1E+40

1E+30

1E+20

1E+10

n

Fig. 4 : Comparison of upper bounds

6 Acknowledgements

I am grateful to Professor Firoz Kaderali and Professor Werner Poguntke for the supervision
of my work. Furthermore, I would like to thank Professor Ulrich Faigle and Professor Walter
Kern (both University Twente) for helpful discussions about some contents of this paper.

86

References

[CCCS 91] P. Camion, C. Carlet, P. Charpin, N. Sendrier: ’On Correlation-immune Func-
tions’, Advances in Cryptology: Crypto ’91, Proceedings, Lecture Notes on Com-
puter Science 576, 1991, p. 86-100

[GuMa 88] Xiao Guo-Zhen, James L. Massey: ’A Spectral Characterization of Correlation-
Immune Combining Functions’, IEEE Transactions on Information Theory, Vol.
34, No. 3, May 1988, p. 569-571

[RuSt 85] Rainer A. Rueppel, Othmar J. Staffelbach: ’Products of Linear Recurring Se-
quences with Mazimum Complezity’, IEEE Transactions on Information Theory,
Vol. IT-33, No. 1, Jan. 1987, p. 124-131

[SeZh 93] Jennifer Seberry, Xian-Mo Zhang, Yuliang Zheng: ’On Constructions and Nonlin-
earity of Correlation Immune Functions (Eztended Abstract)’, Advances in Cryp-
tology: Eurocrypt 93, Proceedings, Lecture Notes on Computer Science, 765,
1993, p. 181-199

[Sieg 84] Thomas Siegenthaler: ’Correlation-Immunity of Nonlinear Combining Functions
of Cryptographic Applications’, IEEE Transactions on Information Theory, Vol.
1T-30, No. 5, Sep. 1984, p. 776-780

[Sieg 85] Thomas Siegenthaler: ’Decrypting a Class of Stream Ciphers Using Ciphertext
Only’, IEEE Transactions on Computers, Vol. C-34, No. 1, Jan. 1985, p.81-85

[YaGu 95] Yi Xian Yang, Baoan Guo: ’Further Enumerating Boolean Functions of Crypto-
graphic Significance’, Journal of Cryptology, 1995, 8: p.115-122

87

Efficient Stream Cipher with Variable Internal State

André Ziquete and Paulo Guedes

IST / INESC
- R. Alves Redol 9, 1000 Lisboa, Portugal
email: (Andre.Zuquete, Paulo.Guedes)@inesc.pt

Abstract

This paper presents an efficient stream cipher ..

using an internal state with variable structure
and evolution. Arbitrarily large internal states
can be used in order to defeat brute-force guess-
ing attacks without compromising the perfor-
mance of cipher, and possibly improving it. At-
tacking is made even more complicated by dy-
namically chosing different topologies and evo-
lutions for the cipher’s internal state.

The cipher controls the evolution of its in-
ternal state by using both an external keyed
pseudo-random generator (EKPRG), either
cryptographically strong or weak, and plaintext
feedback. The plaintext feedback reduces the
probability of producing cyclic keystreams with-
out compromising the security of the cipher.

The parameters controlling the structure and
evolution of the cipher’s internal state can be
chosen in order to achieve different levels of secu-
rity, memory consumption and performance. In
terms of security, we evaluate the impact of this
parameters in the strength of the cipher against
brute-force guessing attacks. Concerning per-
formance, we evaluate the encryption speed of
the cipher using two different EKPRGs — 8-bit
ARC4 and DES working in 8-bit OFB - with
several topologies and evolutions of the internal
state assuring very high security levels. When
comparing against the ciphers used as exter-
nal EKPRGs, we obtain a minimum encryption
speedup of 7 % and 428 %, respectively, and a
maximum speedup of 63 % and 2556 %.

1 Introduction

Traditional ciphers are based on fixed internal

. structures managed by fixed- or variable-length
keys [1, 18]. The knowledge of the cipher’s in-
ternal structure facilitates the development of
attacks attempting to guess its contents or the
key controlling them [4, 5, 6, 3, 15, 14, 20]. This
problem can be reduced if ciphers support some
degrees of freedom regarding their operational
parameters, besides the size of the key, like the
block cipher RC5 [17, 16].

In this paper we present a new efficient stream
cipher allowing to dynamically choose the struc-
ture and evolution of its internal state. By using
a flexible internal structure and a flexible algo-
rithm to modify it, we introduce extra factors of
complexity in the development of sophisticated
attacks against specific implementations of the
cipher. A

The parameters controlling the structure and
evolution of the cipher’s internal state can be
chosen in order to achieve different levels of se-
curity, memory consumption and and perfor-
mance. Arbitrarily large internal states can be
used in order to defeat brute-force guessing at-
tacks without compromising the performance of
cipher, and even improving it in some cases.

The cipher works like any other stream cipher:
plaintext bytes are XORed with a keystream,
producing the ciphertext, and the ciphertext is
XORed with the same keystream to recover the
original plaintext bytes. However, unlike most
stream ciphers, our cipher uses both an external
keyed pseudo-random generator (EKPRG) and
plaintext feedback as sources of data for ran-

88

domising its internal state. The cipher’s key (K)
is used to set up the initial value of its internal
state and also the key used by the EKPRG (see

figure 1).

K* Gt
Key K (initial state)
lK” _,I Internal state l
Pseudo-random %, Next state
generator & % | function

3
l Output function I

- { s
D%
., e
(T Ry

-
-F-c“‘“‘

l Keystream

Plaintext -—---»@-» Ciphertext
Encrypt

Figure 1: Overview of the keystream generator.

The EKPRG can be either cryptographically
strong-or weak, depending on security consider-
ations. It can be a simple iterator over the bytes
of a (possibly large) key, or a cryptographically
strong byte generator like RC4 [18]. The choice
of the right EKPRG is conditioned by the rele-
vance of the data it provides to the overall se-
curity of the cipher, which depends on several
other factors (e.g. the dimension of its inter-
nal structure). If the knowledge of that data
is useless for attackers, then simpler and faster
EKPRGs can be used.

The cipher produces blocks of keystream
bytes from an arbitrarily large internal state,
and uses the EKPRG to shuffle and modify it
whenever new blocks are needed. The struc-
ture and evolution of its internal state is de-
termined by a set of control parameters. Ex-
haustive search attacks against the cipher’s in-
ternal state can be prevented to a great extent
by keeping secret, or variable within known lim-
ited ranges, the value of the control parameters.
For instance, we can derive the control parame-
ters dynamically from the cipher’s key K.

The evolution of the cipher’s internal state,
which is ruled by the control parameters, de-
pends on its own contents, on values provided by

the EKPRG, and on pseudo-random samples of
plaintext bytes. The plaintext feedback, which
is a reasonably random source of information,
drastically reduces the probability of produc-
ing cyclic keystreams. The plaintext feedback is
used in such a way that attackers controlling it
(e.g. using chosen-plaintext attacks) cannot de-
terministically influence the keystream, or even
conclude which keystream bytes were affected by
plaintext bytes.

The performance of the cipher depends on

the control parameters used to define and man-
age its internal state, and on the speed of the
EKPRG. We evaluated the encryption speed of
the cipher, when encrypting 10 Kbyte buffers,
using two different (cryptographically strong)
EKPRGs ~ 8-bit ARC4, a stream cipher al-
legedly compatible with the secret RC4 cipher,
and DES working in 8-bit OFB — and several sets
of control parameters assuring very high secu-
rity levels. When comparing against the ciphers
used as EKPRGs, we obtained a minimum en-
cryption speedup of 7 % and 428 %, respectively,
and a maximum speedup of 63 % and 2556 %.
- The rest of this paper is organised as fol-
lows. The next section describes the cipher’s
keystream generator. Section 3 analyses the im-
pact of the cipher’s control parameters in its
strength against known-plaintext attacks. Sec-
tion 4 presents the implementation of the cipher
and the evaluation of its performance and secu-
rity. Section 5 presents the related work. Fi-
nally, in section 6 we present the conclusions.

2 The keystream generator

The keystream generator was designed using a
system-theoretic approach in order to have a
flexible and arbitrarily large internal state ca-
pable of defeating exhaustive search attacks.
Such internal state is efficiently shuffled by an
EKPRG (see Figure 1). This EKPRG can either
be any generator typically used as a Vernam ci-
pher, like generators using linear feedback shift
registers, block ciphers running in OFB mode,
RC4 [18], or any other generator cryptographi-
cally not strong enough to be used directly as a

89

KeyK” — §_.Offset generator i

%

L 3
e, o8
(gL

.. e oy
i-th secret frame 1 %, =i S| i+lthsecretframe ! |
WWWWW% é R .WM‘&WW-]
F Rotate ™ onple | N

i-th secret frame F

‘4..
Y

i+1-th secret frame F

i-th plaintext frame

..&W&‘E‘&"ﬁ‘“‘ﬁﬁﬁi‘&%‘ﬂmﬁﬁﬁ ..

i-th keystream frame

i+1-th keystream frame

Figure 2: Algorithm to generate a new keystream frame.

Vernan cipher, like the Gifford’s cipher [18, 8].

The generator efficiently. produces pseudo-
random blocks of keystream bytes from its in-
ternal state, and uses the EKPRG to shuffle it
whenever new blocks are needed (see Figure 2).
Samples of plaintext bytes are also used to fur-
ther randomise it. The generator’s internal state
is independent from the internal state of the
EKPRG.

The configuration and evolution of the gener-
ator’s internal state, defined by control param-
eters, can be tailored to achieve different levels
of security, performance, and memory consump-
tion. If the control parameters are kept secret,
then the implementation of the generator can be
relaxed in order to use faster but cryptographi-
cally weaker EKPRGs. The generator’s key K is
used to compute two other keys that influence
its overall behaviour — the initial value of the
generator’s internal state (K') and the key of its
EKPRG (K").

2.1 Algorithm overview

The keystream generation algorithm is pre-

sented. in. Figure 2 and works-as follows. The:

keystream is generated frame by frame, and each

frame has L bytes; these are used only once to
encrypt or decrypt data.. Each frame is com-
puted from F L-byte long secret frames — SF!,

- +++,SFF and each bit of a keystream frame de-

pends on F bits, one from each secret frame.
The initial value of secret frames, K, is dis-
cussed in §2.2.

To generate a new keystream frame, secret
frames are first rotated, then an M-byte long
sample of them is modified and, finally, they are
combined (XORed) to produce a new keystream
frame. Both rotation and modification oper-
ations are based on offsets provided by the
EKPRG - the offset generator. The modifica-
tion of secret frames makes them evolve pseudo-
randomly each time a new keystream frame is
generated. The rotation of secret frames should
make consecutive keystream frames look very
different, even with few modifications of secret
frames (see §2.3). The modification of secret
frames allows them to take, all together, any
of the 22LF possible values, being thus capable
of generating any of the 28% possible values for
keystream frames.

The control parameters of the generator are
the number (F) and length (L) of secret frames
and the number of modifications per secret

90

frame (M). Exhaustive search attacks against
the generator can be prevented to a great ex-
tent by keeping secret, or variable within known
limited ranges, the value of control parameters
used in particular instantiations of the gener-
ator. All these parameters can be dynamically
computed from the key K and cannot be derived
by inspecting the ciphertext.

2.2 Management of K, K’ and K"

The secrecy of the initial contents of secret
frames, K’, is crucial to the overall security
of the generator. The value of K’ should be
as secret and not structured as possible (the
more random the better) to complicate guess-
ing secret frames from keystream frames. Each
< K', K" > pair should be fresh, i.e. never been
used before, to minimise the probability of get-
ting equal keystream sequences. Furthermore,
if the pair < K’/, K" > is fresh but K’ was al-
ready used, then we can use that pair provided
that we start encrypting data with the second
keystream frame, instead of the initial one (di-
rectly computed from K'). :

A possibility for computing a < K’, K” > pair
from a fresh K, is to generate K’ using directly
the output of the offset generator keyed by K,
and compute K” from K differently, e.g. by
hashing it with a one-way hashing function. To
enhance the freshness of K it may incorporate
timestamps or nonces! typically used in key dis-
tribution protocols (e.g. Kerberos [21, 11] and
KryptoKnight [7]).

If a candidate K' is not random enough then it
should not be used before further processing it.
In particular, the bits of K’ should not be exces-
sively biased towards 0 or 1 in order to produce,
with equal probability, any value for keystream
bytes.

If K' is structured or has obvious patterns,
we can hash it until we get a new, unstructured
value for K’. If the bits of K’ are excessively
biased towards either 0 or 1, one can also hash
them until getting a new value for K’, and use
it directly (if not excessively biased) or XOR it

!Nonces are, by definition, fresh values.

with the old one in order to reduce the bias. Or

one can also pseudo-randomly reverse bits until

getting an acceptable balance between zeros and

ones. In any case, however, one should guaran-
tee that the algorithm used to compute a good

K' takes a limited, and as short as possible, ex-

ecution time.

The choice of a particular technique for com-
puting good K’ values depends mostly on the
secret data available to the programs using the
generator. For instance, to extend the SSL pro-
tocol [9] in order to use our cipher, one could use
SSL’s master secrets to compute K", or even
use them directly, and get K’ from the secure
bytes that SSL computes, using a one-way hash-
ing function, to derive keys and secret- MACs
(see [9], §8.2.2). This way, K' is secret, not
structured, and there is a high probability of
getting many different < K’, K” > pairs, even
when using the same value for K’ (i.e. dur-
ing the same SSL session). To avoid excessively
biased K' values, we can either reverse or not
output blocks produced by the hashing function
in order to maintain a reduced overall bias of
the SSL’s secure bytes. In this example the key
K, which is only conceptual, includes an SSL
master secret and client/server random values
(nonces) exchanged in SSL’s hello messages.

2.3 Rotation and modification of se-
cret frames

The rotation and (possibly sparse) modifica-
tion of secret frames is performed using pseudo-
random offset values produced by the offset gen-
erator. This section describes how these values
are used.

2.3.1 Rotation

Each L-byte long secret frame is r-byte rotated,
where r is a value (modulo L) obtained from the
offset generator. The set of rotations used in the
generation of each new keystream is a rotation
vector ¥ = {ry,---,rr}, where r; is used to ro-
tate the i-th secret frame. To minimise the sim-
ilarity between consecutive keystream frames, it
is advised to use F' different r values for each

91

rotation vector.

There are two basic approaches to handle se-
cret frames’ rotations. One is to always use new
offsets provided by the offset generator to build
rotation vectors, and trust that any particular
alignment of secret frames is not repeated be-
fore applying a high enough number n of ro-
tation vectors (or, in other words, before ran-
domly modifying a high enough number n-M
of bytes of each secret frame). This approach
strongly depends on the values provided by the
offset generator. If n is not usually high enough,
there is a risk of producing too close and similar
keystream frames, allowing attackers to recover
many plaintext bytes by randomly XORing-the
ciphertext with past cryptanalyzed keystream
frames. '

The other approach is to build rotation vec-
tors from well chosen values, also derived from
the offset generator’s pseudo-random output,
capable of being used for L — 1 consecutive ro-
tations without repeating any particular align-
ment of secret frames. After those L — 1 rota-
tions, we can either reuse the rotation vector,
shuffled or not, or we can repeat the process
starting by getting another fresh rotation vector.
If we guarantee that all secret frames never get
realigned before L consecutive rotations, there
is a low probability of getting similar keystream
frames when the realignment happens, because
in the meanwhile we randomly modified L-M
bytes of each secret frame.

The second approach guarantees a minimum
distance between realignments of secret frames
but simplifies brute-force guessing attacks, be-
cause it uses less rotation vectors. However, the
threat of such attacks can be minimised by cor-
rectly choosing the cipher’s control parameters
(see §3). Consequently, we decided to use the
second approach, and we build a new rotation
vector after producing L — 1 keystream frames
with the previous one.

To build suitable rotation vectors we use the
following heuristic. If L is prime, we build a
rotation vector from any F different values pro-
vided by the offset generator. If L is not prime,
then we use the next three steps to build a ro-
tation vector: '

1- gét a value for r;.

2 - get a different value for r; so that:
ry # r1 % fac(L) mod L
|ry = ro|is prime relatively to L

where fac(L) is any integer factor of L
greater than 1. Empirically, we found out
that these rules to filter out r9 values avoid
all realignments of SF! and SF?2 before L
rotations.

3 - get F — 2 different values for the remaining
elements of the rotation vector.

This heuristic for choosing rotation vectors al-
lows them to be used L — 1 consecutive times
without repeating any realignment of all secret
frames. The maximum combinations of rota-
tions (MCR), i.e. the maximum number of dif-
ferent rotation vectors we can build with the
heuristic, is: '

MCR = (1)
r L! i L is ori
m I 1s prime
L-1 '_ T
= 4 Z (L—Hz(L,Tl))-
r1=0
F-2
[I (- 7F-1) otherwise
\ =1 '

where H,(L,r;) is the number of candidate r;
values reject by step 2 of the heuristic for a given
L and rq.

2.3.2 Modification

To do M byte modifications in each secret frame
we consecutively get M pairs of values (modulo
L) from the offset generator — 0y;, 02;, Jj €
{1,---,M} - and update the o;-th byte of the

" i-th secret frame by XORing it with the op-th

byte of the i+ 1-th secret frame and the os-th
byte of the plaintext encrypted/decrypted with
the previous keystream frame:

Vie{l,---, F},
Vje_{la"'vM}a) (2)
SF‘[OIJ-] = SF’[O]J]@

SF1+1[02j] 69 P[Ogj]

92

were SF* and P represent the i-th secret frame
and the plaintext, respectively, and SFF+l =
SF'. Considering all secret frames, the max-
imum combinations of modifications (MCM),
i.e. the maximum number of combinations of o;
and o, values that can be used when generating
a new keystream frame, is:

MCM LM)

and the maximum combinations of effective byte
modifications (EBM), assuming M < L, is:

M [. 17
EBM, = 2°-1 4
w = g (n)e-] e
where m represents the number of effective byte
modifications per secret frame. The value of
MCM can be greater or lower than the value
of EBM,,., depending on the values of L, F
and M.

By XORing bits from two secret frames we
probabilistically reduce the bias of secret frames’
contents while modifying them. If P(0)sr and
P(0)p are the probabilities of a bit from secret
frames or plaintext being zero, and

PO)sr =

0.5 4+ £%
PO)p = i %)

0.5+¢%

then, with a modification using the above algo-
rithm, the probability P(0)sr of each new bit
is:

P0)sr =

which is always closer to 0.5 than the initial one.
The value of €%, which is unpredictable, helps in
changing the sign of the expression %z %5 -€%:

0.54+4-e%p -5 €% (6)

5%}? P 52’F'£%F'£?’
>0[1>0 >0
>0 <0 <0
<0|>0 >0
<0 | <0 <0

Note that an attacker controlling P(0)p (e.g.
using a chosen-plaintext attack) cannot deter-
ministically increase |¢%g[; it can only influence
the sign of €3z. To reduce that influence one

can interleave the usage of either Plos] or Plos],

its bitwise inverse, in consecutive modifications.
This way, attackers cannot deterministically in-
fluence any aspect of the evolution of €35 along
the generation of keystream frames (see §4.3).

Using plaintext bytes for modifying secret
frames increases the global randomness of the
keystream generation algorithm without a signi-
ficative performance penalty. Furthermore, we
introduce an history factor in the generation

‘algorithm, which forces attackers to trace and

store many bytes of both plaintext and cipher-
text in order to guess the internal state of the
generator.

3 Securit;.y analysis

The control parameters of our keystream gen-
eration algorithm — number of secret frames
(F), length of frames (L) and number of byte-
modifications per secret frame (M) — influence
its memory consumption, performance and secu-
rity. The memory consumption increases both
with L and F, and is not affected by M. Intu-
itively, the performance of the keystream gener-
ator increases with L, and decreases with both
F and M; see §4.2 for a more detailed analysis.

In this section we will address the impact of
these three parameters in the overall security of
the keystream generator. In particular, we will
evaluate how they complicate the task of guess-
ing the internal state of the generator, namely
the contents of secret frames, when using known-
plaintext attacks. The knowledge of the genera-
tor’s internal state is fundamental for attackers
willing to predict the value of future keystream
frames, because these are not computed from
past keystream bytes but from (modified) past
secret frames. Naturally, we assume that for
that purpose attackers know the values of the
generator’s control parameters.

We also assume that attackers use brute force
guessing attacks because we know of no simpler
attacks. In §5 we highlight some improved at-
tacks that work against similar ciphers and we
explain why they do not succeed against our ci-
pher.

93

3.1 Without modifications — M =0

Assume that an attacker knows two consecu-
tive keystream frames — KF; and KFiy;. To
guess the value of the secret frames that pro-
duced KF; and K F;;; the attacker must guess,
for each possible rotation vector 7, X bytes of
SF}, ..., SFF that, together with 77, produce
SFLy, -+ SFf, and, finally, KFiy1.
Empirically, we observe that X depends on L,

F, and on the elements of r, being greater or

equal than a minimum value Xp.in given by:

X(L,F,75) 2 Xmin = 1+ L(F-2) (7

Since any value is possible for the contents
of the X bytes, we have the following number
of possible combinations for guessing correctly
SF},---, SFF and SFL,, -, SFf;:

MCR)
Cispa =y 22XEFD) (8)

Jj=1

Now assume the attacker also knows the next
keystream frame, KF;;,. From each of the
Cii+1 combinations the attacker may now find
if a previous rotation vector, or a new one, pro-
duce K F,;; from the guessed secret frames. The
number of combinations he has to try to guess
valid values for secret frames is then, in the
worst -case:

Ciitri42 = MCR-Ciin (9)

or, in the best case,

Ciitrit2 = GCiinn ’(10)

depending if a new rotation vector was fetched
or not to generate the ¢ + 2-th keystream frame.

This result can be generalised to any number
of keystream frames, consecutive or not. For
non-consecutive keystream frames the attacker
can use equivalent rotation vectors equal to the
sum (modulo L) of all intermediate rotation vec-
tors.

From-equation (10) we conclude that the more
keystream frames an attacker knows, until a
limit of L — 1, the more he is able to validate
correct guesses of secret frames (and rotation
vectors). To avoid such danger, there are two

non-mutually exclusive solutions: raise C; ;41 to
a prohibitive value concerning exhaustive search
attacks, or invalidate equations (8) to (10) by us-
ing M # 0, i.e. always performing at least one
modification of each secret frame when generat-
ing a new keystream frame.

3.2 With modifications — M #0

Equations 8 to 10 are valid for M = 0, i..
without considering byte modifications in secret
frames. Considering modifications, and equa-
tions (3) and (4), equations (8) to (10) must be
re-written as follows:

Y = min(MCM, EBMpay + 1)

MCR
Ciipr = Y.) 28X@FS)
J=1 '
Ciitri42 = Y -MCR-Cijipq

(11)
(12)

or, in the best case,

(13)

where Y represents the minimum of MCM and
EBM ez + 1.)

As expected, the number of combinations in-
creases with any of the three parameters, L,
F and M. Furthermore, the more keystream
frames an attacker has, more combinations he
has to try to guess the correct values of secret
frames (and rotation vectors). Since the value
of F should be as low as possible to increase the
performance and reduce the memory consump-
tion of the generator, one should use F' = 2 or,
at the maximum, F = 3. For these values of F,
and for each value of L, one can derive a min-
imum value for M in order to get a value for
expression (11) higher than a given level. For
example, if we have F = 2 and L = 128, and
considering X (L, F,7;) always equal to Xpin,
then

Ciit122%2 = M2>1

Ci,i+1 > 24 = M >2

Ciiy1 222 = M2>4

Ciittit2 = Y-Ciina

Note that the above discussion is only rele-
vant if attackers know the values of L, F and
M. If they only know part of them, then the

94

value of C; ;11 gets higher. As previously stated,
these three parameters, or at least one of them,
can be chosen dynamically for each case, being
thus very easy to complicate exhaustive search
attacks to guess the contents of secret frames.

3.3 Influence of the offset generator

The output of EKPRGs used as offset gener-
ators has an impact in the overall security of
our generator. If the offset generator produces
a reduced set of output values, or a well-known
sequence of values?, or even a sequence of val-
ues with a known short period, that reduces the
values of expressions (1), (3), (4) and (7). This
results in a reduction of the maximum value of
Ci it1, simplifying the brute-force cryptanalysis
of our generator. The exact reduction of C; ;4
can only be computed for specific EKPRGs.

Using cryptographically weak EKPRGs as off-
set generators does not necessarily reduce the
overall security of our generator. For instance,
if a given EKPRG fails under ciphertext-only
or known-plaintext attacks, like the Gifford’s ci-
pher [8], this is not a problem for our generator.
In fact, to cryptanalyze the EKPRG, in order
to obtain its key K’ or its future output, an at-
tacker first has to guess its past output (offset
values), which means guessing correctly rotation
vectors and modification offsets used by our gen-
erator. In other words, it involves an initial and
successful cryptanalysis of our generator. As a
result, we can use EKPRGs that are not crypto-
graphically strong enough to be used directly as
Vernan ciphers without compromising the over-
all security of our generator.

4 Implementation and evalua-
tion
In this section we describe the implementation

of the keystream generator and we evaluate its
performance and security.

2Like the one produced by the multiplicative congru-
ential pseudo-random number generator implemented by
_ the C library function rand().

4.1 Implementation

Our implementation of the keystream genera-
tor supports two values for F (2 and 3) and
any value for L up to 256. The generator does
not use a specific offset generator; any offset
generator capable of producing 1-byte long off-
sets (modulo L) can be provided at initialisa-
tion time. It does not modify source bytes,
either plaintext or ciphertext, and was opti-
mised in order to reduce the number of function
calls and maximise the use of CPU registers in-
stead of memory accesses. We unrolled encryp-
tion/decryption cycles using 8 copies of the loop
body, but we did not unroll per frame modifi-
cation cycles. To speedup the creation of new
rotation vectors we use two lists created at ini-
tialisation time: one with the factors of L, and
the other, for non-prime L values, with values
lower than L that are not prime relatively to L.
If L is even, however, the heuristic for building
rotation vectors has a simple verification that
allows us to remove even values from the second
list.

To avoid the cost of copying memory buffers
when rotating secret frames, they are imple-
mented as two contiguous buffers with equal
contents. Rotating secret frames is very effi-
cient, requiring only updating pointers to the
actual beginning of secret frames. The draw-
back of this approach is that we need to dupli-
cate the modifications of secret frames and we
spend more memory to store them.

The keystream frame is not actually com-
puted prior to encrypt or decrypt data. Instead,
it is used as a repository of ciphertext bytes
or plaintext bytes when encrypting or decrypt-
ing data, respectively; ciphertext bytes are pro-
duced or decrypted using directly the contents
of secret frames. When the keystream frame is
exhausted, its contents are used to recover plain-
text bytes for modifying secret frames, either
directly when decrypting data, or by XORing
them with the appropriate bytes of secret frames
when encrypting data. As a result, decryption
is slightly faster than encryption.

95

4.2 Performance evaluation

In this section we evaluate the performance of
our cipher using two different offset genera-
tors, which were also used as reference ciphers:
8-bit ARC4 and DES working in 8-bit OFB
mode [18]. For these two ciphers we used the
code of SSLeay, the public-domain SSL version
written by E. Young [9, 23]. The SSLeay’s im-
plementation of ARC4 also unrolls encryption
cycles using 8 copies of the loop body.

The benchmark applications were executed _

on a Sun SPARCstation 10/40 with 32-Mbyte
RAM running SunOS 4.1.3. Tables 1 and 2
present the average encryption speed of the ref-
erence ciphers and our cipher when encrypting
10 Kbyte buffers starting from a warm cache
situation (after filling the buffers with data).
The values presented were computed from the
average elapsed time spent in encrypting every
buffer, and average values were computed from
30 runs of benchmark applications.

Stream | Encryption speed

cipher (Kbyte / s)

ARC4 2172
DES/OFB 87

Table 1: Average encryption speed of the ref-
erence ciphers — 8-bit ARC4 or DES working
in 8-bit OFB - when encrypting of a 10 Kbyte
buffer.

The sixth column of Table 2 presents the en-
cryption speed our cipher when using the offset
generator indicated in the first column (ARC4
or DES/OFB) and the control parameters, L,
F and M, shown in the second to the fourth
columns. The last column presents the speedup
of our cipher when compared against the refer-
ence cipher, ARC4 or DES/OFB, used as off-
set generator. Assuming the worst case con-
cerning security, i.e. that the values of con-
trol parameters are public, we chose M in or-
der to assure a value for expression (11) higher
than 2!?8, The fifth column of Table 2 presents
the logarithm base 2 of expression (11) for the

control parameters used in the cipher and using

The values of Table 2 show that the perfor-
mance of our cipher depends on the performance
of the offset generator. Comparing the speed of
‘our cipher against the speed of the ciphers used
as offset generators, we observe a small speedup
when the offset generator is fast (ARC4), and
a very high speedup when the offset generator
is slow (DES/OFB). When using ARC4 as ref-
erence cipher and offset generator, we achieve
a minimum speedup of 7 % and a maximum
speedup of 63 %. For DES/OFB we achieve
a minimum speedup of 428 % and a maximum
speedup of 2556 %.

These performance figures show that, even
when comparing against a fast reference cipher,
like ARC4, our cipher performs better if the
same cipher is used as its offset generator. Nat-
urally, the performance of our cipher could be
improved by using faster offset generators, pos-

sibly cryptographically weaker than the ones we
used. :

In general, the performance of the cipher in-
creases with L, mainly because we reduce the
number of keystream frames that need to be gen-
erated per encrypted buffer. Furthermore, we
minimise the dependency of the cipher from the
speed of the offset generator because less offsets
are needed to rotate and modify secret frames.
When F = 3 and the offset generator is fast,
the value of L has a reduced influence in the
speed of the cipher, allowing to choose a value
for L taking in main consideration the memory
consumption of the cipher.

By increasing F we drastically increase the
security of the cipher but we only increase signi-
ficatively its performance if the offset generator
is slow. This different behaviour is explained by
two opposite consequences: (i) a performance
loss directly caused by the increase of E, and
(ii) a performance gain indirectly caused by the
reduction of M to the minimum, which can be
done without compromising security. By min-
imising M we reduce the number of random ac-
cesses to secret frames to modify them, which
in our implementation need to be duplicated,
and we also minimise the dependency of the ci-
pher from the speed of the offset generator. This
means that with faster offset generators we have

96

Offset L |F | M|logy(Ciit1) || Encryption speed | Speedup
generator , (Kbyte / s) (%)

ARC4 6412 1|5 139 2324 7

311 573 2694 24

12812 4 132 3054 4]

311 1094 2997 38

256121 4 142 3442 58

311 2127 3541 63

DES/OFB| 64|25 139 459 428

311 573 1091 1154

1281 2| 4 132 972 1017

311 1094 1624 1767

256 {2 | 4 - 142 1547 1678

311 2127 2311 2556

Table 2: Average encryption speed of a 10 Kbyte buffer using our cipher and ARC4 or DES/OFB
as offset generator. The value of logy(C; ;4+1) was computed using X (L, F,7;) = Xmin. Speedup
values were computed dividing the speed of our cipher by the speed of the reference cipher, ARC4

or DES/OFB, used as offset generator.

lower performance gains due to the reduction of
M, and they can be overcome by the perfor-
mance loss due to the increase of F.

If all the control parameters of the cipher are
secret, or at least L is secret, then we can re-
duce the values of F and M (if greater than 2
and 1, respectively) and get higher encryption
speeds. If we permit secret values for L between
L,uin and Ly, .., we introduce and extra factor of
complexity in the cipher’s brute-force cryptanal-
ysis equal t0 (Lmaz — Limin). This extra factor
allows to consider lower values for C;;y; when
computing M (given Ly, and F) and, conse-
quently, to obtain lower values for M than when
L is well-known.

4.3 Security evaluation

Our cipher, unlike most stream ciphers, uses
plaintext feedback to modify its internal state.
Therefore, it is important to analyse how the
plaintext data influences the internal state of the
cipher. Asstated in §2.3.2,if P(0)sp = 0.5+¢%5
is the probability of secret frames’ bits being
zero, attackers using chosen-plaintext attacks
can only influence the sign of €%, but not its
absolute value.

We will now evaluate the evolution of %5
along the encryption of 100 Kbyte plaintext

buffers when starting from a non-null value. As
plaintext buffers we used two with highly bi-
ased data (all zeros and all ones) and another
with truly random data (produced by the Cryp-
toLib’s true random generator {12]). For the
configuration of our thé cipher we used L = 128,
F =3, M =1 and ARC4 as offset generator.
The evolution of €% while encrypting the three
plaintext buffers is presented in Figure 3.

As expected, we observe in the figure that,
independently from the plaintext, the value of
|e2 5| has a tendency to get lower along the gen-
eration of keystream frames. Such tendency is
more relevant when encrypting random data,
and may be slightly reduced when encrypting
highly biased data, in particular null data. As
suggested in §2.3.2, a simple solution to avoid
the distinguished influence of opposite highly bi-
ased plaintext data (p) is interleaving the usage
of either p and P, its bitwise inverse, on each
modification of secret frames. Figure 4 shows
that this simple modification, which involves a
negligible performance penalty, drastically re-
duces the effect of plaintext bytes in the evolu-
tion of €% when using the previous evaluation
scenario.

97

-0,030 y t 4 .
0 100 200 300 400 500 600 700
keyframe index

Figure 3: Evolution of e%F when using two highly biased plaintext buffers (all zeros and all ones)
and a plaintext buffer with random data.

I ------ plaintext=0 -~ plaintext=1 random plaintext

5
s o AN
-0,015 ‘.\ i
-0,030 4 : : : : : : \
0 100 200 300 400 o + +

keyframe index
Figure 4: Evolution of €% when using two highly biased plaintext buffers (all zeros and all ones)

and a plaintext buffer with random data. In this case we interleaved the usage of plaintext bytes
and their bitwise inverse while modifying secret frames.

98

5 Related work

The design of this keystream generator was in-
spired in several generators producing bit se-
quences by XORing the output of several linear
feedback shift registers (LFSRs), like the Alter-
nating Step Generator and many others [2, 10,
25, 22, 18]. Considering that the contents of se-
cret frames are the output of LFSRs (equivalent
LFSRs), and without considering their modifica-
tion (M = 0), our generator is comparable to an
extension of the Alternating Step Generator us-
ing F LFSRs instead of two to compute cutput
bits, and clocked by the sum of a fixed frequency
and pseudo-random high-frequency bursts (the
rotation of secret frames). The contents of se-
cret frames would be equivalent to cycles of the
equivalent LFSRs.

By considering modifications, the contents of
secret frames become equivalent to partial views
of possible large and noncyclic outputs of the
equivalent LFSRs. However, and unlike for LF-
SRs, the modification of secret frames is par-
tially independent of their own contents because
it is controlled by offsets provided by the offset
generator and by plaintext data.

If the output of the offset generator is un-
known to attackers, then the linear complexity
and the maximal sequence length of the equiv-
alent LFSRs are unpredictable, and the same
is true for the output of the generator. As a
result, the generator becomes immune to the
Siegenthaler’s correlation attack, because this
attack is based on the statistical analysis of
maximal length sequences produced by inter-
nal LFSRs with known length [20]. Similarly,
it also becomes immune to the linear syndrome
attack, because this attack relies on the knowl-
edge of feedback polynomials of the equivalent
LFSRs [24].

6 Conclusions

In this paper we presented a new approach in
the design and implementation of stream ci-
phers. The approach consists in allowing ciphers
to have a variable internal state with a struc-

ture and an evolution model chosen at instan-
tiation time. Arbitrarily large internal states -
can be used in order to defeat brute-force guess-
ing attacks without compromising the perfor-
mance of cipher, and even improving it in some
cases. The cipher uses an external keyed pseudo-
random generator, EKPRG, either cryptograph-
ically strong or weak, and plaintext feedback as
sources of data for pseudo-randomly modifying
its internal state.

The structure and behaviour of the cipher is
ruled by three control parameters — the num-
ber (F) and length (L) of secret frames (L) and
the number of modifications per secret frame
(M). These parameters have a different impact
in several aspects of the cipher, like its strength
against exhaustive search attacks, its memory
consumption, and its performance. In partic-
ular, the strength of the cipher increases with
all of them, the memory consumption increases
with F' and L, and the performance increases
with L and decreases with the other two.

In the security analysis of the cipher we have
evaluated how the strength of the cipher against
known-plaintext attacks depends on the control
parameters, and how these can be chosen in or-
der to achieve arbitrary security levels. From
that evaluation we chose several sets of control
parameters assuring high security levels and we
measured the performance of the cipher when
using them. Since the performance of the cipher
also depends on the speed of the EKPRG, we
used two different and cryptographically strong
EKPRGs, one fast (8-bit ARC4) and one slow
(DES working in 8-bit OFB). To get a notion of
the cipher’s speed, we compared it against the
speed of two reference ciphers, the same we used
as EKPRGs of our cipher.

We evaluated the encryption speed of our ci-
pher, and the two reference ciphers, when en-
crypting 10 Kbyte buffers starting from a warm
cache situation. When comparing the speed of
our cipher against the speed of the reference ci-
phers used as EKPRGs, we obtained a minimum
encryption speedup of 7 % and 428 %, respec-
tively, and a maximum speedup of 63 % and
2556 %. These performance results could be im-
proved by using faster EKPRGs, possibly cryp-

99

tographically weaker than the ones we used.
Since our cipher uses pseudo-random plain-

text samples to randomise its internal state, we

have experimentally evaluated how the plaintext
influences the bias of the secret frames’ contents.
For the evaluation we used two plaintext buffers
with highly biased data and a buffer with truly
random data. From the evaluation we confirmed
that, as expected, the bias of the secret frames’
contents as a tendency to get lower as more
keystream frames are generated. In addition,
we saw that by interleaving the usage of plain-
text bytes and their bitwise inverse, we prevent
chosen-plaintext attacks from deterministically
influencing the evolution of the bias.

References

[1] Henry Beker and Fred Piper. Cipher Sys-
tems: The Protection of Communications.
Northwood Books, London, 1982.

[2] T. Beth and F. C. Piper. The Stop-and-
Go Generator. In Advances in Cryptology
-~ EUROCRYPT ’84 Proceedings, pages 88—
92. Springer-Verlag, 1984.

[3] E. Biham. New Types of Cryptanalytic
Attacks Using Related Keys. In Advances
~'in Cryptology - EUROCRYPT ’93 Proceed-

" ings, pages 398—409. Springer-Verlag, 1994.

[4] E. Biham and A. Shamir. Differential
Cryptanalysis of DES-like Cryptosystems.
In Advances in Cryptology - CRYPTO ’90
Proceedings, pages 2-21. Springer-Verlag,
1991.

[5] E. Biham and A. Shamir. Differential
Cryptanalysis of Feal and N-Hash. In Ad-
vances in Cryptology - EUROCRYPT 91
Proceedings, pages 1-16. Springer-Verlag,
1991.

[6] E. Biham and A. Shamir. Differential
Cryptanalysis of Snefru, Khafre, REDOC-
11, LOKI, and Lucifer. In Advances in Cryp-
tology -~ CRYPTO ’91 Proceedings, pages
156-171. Springer-Verlag, 1992.

[7] Ray Bird, Inder Gopal, Amir Herzberg,
Phil Janson, Shay Kutten, Refik Molva,
and Moti Yung. The KryptoKnight Family
of Light-Weight Protocols for Authentica-
tion and Key Distribution. ACM Trans. on
Networking, pages 31-41, February 1995.

[8] Thomas R. Cain and Alan T. Sherman.
How to Break Gifford’s Cipher. In Proc. of
the 2nd Annual ACM Conf. on Computer
and Comm. Security, pages 198-209. ACM
Press, 1994.

[9] Alan O. Freier, Philip Karlton, and Paul C.
Kocher. SSL Protocol Version 3.0. Internet
Draft, Netscape Communications Corp.,
March 1996.

[10] C. G. Giinther. Alternating Step Genera-
tors Controlled by De Bruijin Sequences. In
David Chaum and Wyn L. Price, editors,
Advances in Cryptology - FEUROCRYPT
'87 Proceedings, Lecture Notes in Computer
Science, volume 304, pages 5-14. Sprmger—
Verlag, Berhn, 1988.

[11] John T. Kohl. The Evolution of the ker-

beros Authentication Service. In Spring
1991 EurOpen Conference, Tromsg, Nor-
way, 1991.

[12] J. B. Lacy, D. P. Mitchell, and W. M.
Schell. CryptoLib: Cryptography in Soft-
ware. In Proc. of the fth UNIX Security
Symposium, pages 1-17. USENIX Associa-
tion, 1993.

[13] X. Lai, J. Massey, and S. Murphy. Markov
Ciphers and Differencial Cryptanalysis. In
Advances in Cryptology - EUROCRYPT
’91 Proceedings, pages 17-38. Springer-
Verlag, 1991.

[14] James L. Massey. Shift-Register Systhesis
and BCH Decoding. IEEE Trans. on Infor-
mation Theory, IT-15(1):122-127, January
1969.

[15] M. Matsui. Linear Cryptanalisys Method
for DES Cipher. In Advances in Cryptol-

100

[16]

[17]

[19]

(22]

(23]

(24]

ogy - EUROCRYPT 98 Proceedings, pages
386-397. Springer-Verlag, 1994.

The RC5, RC5-CBC, RC5-CBC-Pad, and
RC5-CTS Algorithms. RFC 2040, RSA
Data Security, Inc., MIT Laboratory for
Computer Science, October 1996.

R. Rivest. The RC5 Encryption Algorithm.
In 2nd Int. Workshop on Fast Software En-
cryption, Lecture Notes in Computer Sci-
ence, pages 86-96, Leuven, Belgium, 1995.
Springer-Verlag.

Bruce Schneier. Applied Cryptography:
Protocols, Algorithms and Source Code in
C. John Wiley & Sons, Inc., second edi-
tion, 1996.

T. Siegenthaler. Correlation-immunity of
nonlinear combining functions for cryp-
tographic applications. IEEE Trans.
on Information Theory, 1T-31(5):776-780,
September 1984.

T. Siegenthaler. Decrypting a Class of
Stream Ciphers Using Ciphertext Only.
IEEFE Trans. on Computers, C-34(1):81-85,
January 1985.

Jennifer G. Steiner, Clifford Neuman, and
Jeffrey 1. Schiller. Kerberos: An Authenti-
cation Service for Open Network Systems.
In Proc. of the USENIX Winter Conf.,
pages 191-202, Dallas, Texas, USA, Febru-
ary 1988.

S. B. Xu, D. K. He, and X. M. Wang.
An Implementation of the GSM General
Data Encryption Algorithm A5. In CHI-
NACRYPT ’94 Proceedings, pages 287-291,
Xidian, China, November 1994.

E. A. Young. SSLeay and SSLapps
FAQ, 1997. http://www.psy.uq.edu.au:
8080/~ ftp/Crypto.

K. C. Zeng and Huang M. Q. On the Linear
Syndrome Method in Cryptanalysis. In Ad-
vances in Cryptology — CRYPTQO 88 Pro-
ceedings, Lecture Notes in Computer Sci-

ence, volume 403, pages 469-478. Springer-
Verlag, New York, 1988.

[25] K. C. Zeng, C.-H. Yang, and T. R. N. Rao.

101

On the Linear Consistency Test (LCT) in
Cryptanalysis. In Advances in Cryptology —
CRYPTO °’89 Proceedings, pages 164-174.
Springer-Verlag, 1990.

A Systematic Procedure for Applying Fast
Correlation Attacks to Combiners with Memory

M. Salmasizadeh!?, J. Golié3, E. Dawson', and L. Simpson'
1 Information Security Research Centre, Queensland University of Technology
GPO Box 2434, Brisbane Q 4001, Australia
Email: { salmasi, dawson, simpson}@fit.qut.edu.au
2 Electronic Research Centre, Sharif University of Technology
P.O. Box 11365-8639, Tehran, Iran
3 Paculty of Electrical Engineering, University of Belgrade
Bulevar Revolucije 73, 11001 Belgrade, Yugoslavia
Email: golic@galeb.etf.bg.ac.yu

Abstract

A systematic procedure for applying fast correlation attacks to combiners with memory is in-
troduced. This procedure consists of the following four stages: identifying correlated linear input
and output transforms with maximum possible or relatively large correlation coefficient, calculating
low-weight polynomial multiples based on the identified input linear transform, applying an iterative
error correction algorithm to the linear transform of the observed keystream and solving several sets
of linear equations to determine the initial state of the input LFSRs. This procedure is successfully -
applied to three keystream generators, namely, the sumimation generators with three and five inputs,
the nonlinear filter generator and the multiplexed sequence generator.

1 Introduction

A well-known type of keystream generator for stream cipher applications consists of a number of linear
feedback shift registers (LFSRs) combined by a memoryless nonlinear function. The keystream sequences
produced by these generators can achieve desirable cryptographic properties such as a large period, high
linear complexity and statistics which satisfy standard statistical tests [20]. However, in [22] and [23] these
structures are shown to be vulnerable to divide and conquer correlation attacks based on the termwise
correlation between the keystream sequence and a subset of the underlying LFSR sequences. In [22],
the concept of the correlation immunity of boolean functions is introduced, and the trade-off between
linear complexity and correlation immunity pointed out. According to [25], the output of any memoryless
boolean function is correlated to at least one linear function of its inputs. Once such a linear function
has been determined, it can then be used to mount a basic correlation attack on the involved inputs.
More importantly, fast correlation attack techniques based on iterative probabilistic decoding have been
used and introduced in [17], see also [4], [18], [19] and [10]. These attacks are successful if the correlation
coefficient is large enough, and if the LFSR feedback polynomials involved have sufficiently many low-

weight (weight is the number of nonzero terms) polynomial multiples of moderately large degrees, see the

102

convergence condition [19].
To overcome the trade-off between linear complexity and correlation immunity, Rueppel [20] suggested
the use of combiners with memory. The combiner with memory, as shown in the inset on Figure 1, is a

non-autonomous finite-state machine [8), defined by

Ser1 = F(X,8), t>0 (1)
b = f(Xt:St)1 t>0 (2)
where, at time ¢, X; = (14, ,&pe), is an input vector, S; = (81, +,8m¢), is a state vector, with Sy

the initial state, and y; is the output bit. The function F : GF(2)" x GF(2)™ — GF(2)™ is a next
state vector Boolean function, and f : GF(2)" x GF(2)™ — GF(2) is an output Boolean function. The
notations F(X,S) and f(X, S) are used for the next state and output functions, respectively.

Correlation properties of a general combiner with an arbitrary number, m, of memory bits are analysed
in [6]. It is shown that in such a combiner there exists a nonzero linear function (transfofm) of at most
m+1 successive output bits that is correlated to a linear function of at most m-+1 successive input binary
vectors. For a combiner with m bits of memory and n inputs, the required computational complexity
to determine the correlation coefficients between a given linear function of m + 1 successive outputs
and all linear functions of m + 1 successive inputs, using the Walsh transform technique, is O((mn +
m + n)2m7tmAn) - Considering all 2™+1 — 1 nontrivial output linear functions, the total computational
complexity becomes O((mn + m + n)2mn+2m+n) This s not feasible for relatively large mn which,
according to (8], is needed to obtain a sufficiently small value of the largest correlation coefficient. The
linear sequential circuit approximation (LSCA) method as introduced in [6] provides a feasible procedure
for finding such pairs of linear functions with comparatively large correlation coefficients. The LSCA
method consists of determining and solving a linear sequential circuit that approximates a binary combiner
with memory. This method generally applies to arbitrary binary combiners with memory without any
restriction regarding the output and next-state functions.

The first objective of this paper is to introduce a systematic procedure for cryptanalysis of regularly
clocked linear feedback shift register (LFSR) based stream ciphers whose keystream generators are com-
biners with memory. While cryptanalysis of particular keystream generators based on the correlation
weakness has been published, a comprehensive general method as presented in this paper has not been
published as such. It is assumed that the cryptanalyst knows the complete structure of the keystream
generator, including the number of input LFSRs and memory bits, the feedback polynomials of the LF-
SRs, the output and the next-state vector Boolean functions. In addition, it is assumed that a segmexit
of the keystream sequence is known. The goal is to determine the secret key, which controls the initial
state of the input LFSRs. The second objective is to demonstrate the applicability of this method of
cryptanalysis to three well known keystream generators: the summation generator [21], the nonlinear

filter generator [9] and the multiplexed sequence generator [12].

103

2 Fast Correlation Attacks

2.1 Probabilistic model

The fast correlation attack is based on a model in which the observed keystream sequence z = {2},
is regarded as a noisy version of an underlying LFSR sequehoe a = {a;}}¥,. That is, the sequence
z = {z}}, is the output of a memoryless binary symmetric channel (BSC) with error probability p
(corresponding to c, the known correlation coefficient, where ¢ = 1 — 2p) when the unknown LFSR
sequence a = {a;}Y; (to be reconstructed) is the input. An iterative, probabilistic, parity-check based

algorithm is used to perform error correction in an attempt to reconstruct a.

2.2 Parity-checks

A parity-check is any linear relationship satisfied by a LFSR sequence. It is known that the parity-checks
correspond to polynomial multiples h(z), of the LFSR feedback polynomial f(z) such that h(0) = 1 [4].
For the fast correlation attack, the objective is to obtain sufficiently many parity-check polynomials h{z)
of low weight and of as small degree as possible, because the maximum degree used determines the length
of keystream sequence required for the attack.

A number of methods can be used to generate low weight polynomial multiples. If f(z) is of low
weight, repeated squaring [17] of f(z) is a simple weight-preserving technique. If not, other methods
must be used. To generate all h(z) of weight at most 5 and degree at most M > r, where r is the degree
of f(x), we used the polynomial residue method based on the birthday paradox, briefly mentioned in [17].
First, in O(M) time, compute and store the residues of all the monomials ™ mod f(z), 1 < m < M.
Second, in O(M?2/2) time, compute (by bitwise summation) the sums z* + 27 ‘mod f(z) and store the
residues, for all different pairs 1 < i < j < M. Third, in O(M?log, M) time, use a fast sorting algorithm
to sort these summation residues. A pair of sums which have equal residues can be used to form a
polynomial multiple of weight 4 (weight 2 is not possible if M is smaller than the period of f(z)). A pair
of sums for with residues which differ by 1 (the binary sum of the residues is equal to 1) can be used to
form a polynomial multiple of weight 3 or 5. By the birthday paradox argument, expected to be valid
for a random f(z), equal residues will, with high probability, appear if M2 > 2/2 ie., if M > 2/4,
because the equivalent number of residues tested to find equal residues is 2(1‘;) In fact, pairs of sums
with residues which differ by 1, yielding polynomial multiples of weight 5, are much more likely than the
others, a the point overlooked in [17] where such pairs are not considered at all. So, both the required
precomputation time and the storage required for finding the parity-check polynomials of weight at most
5 are O(27/2). A similar method can be used to generate all h(z) of weight at most 2k + 1, but this
requires the computation and storage of the residues ¥ + --- +z%* mod f(z) for all (%) combinations

1<4; <+ <ip < M, see [7].

104

2.3 Iterative error-correction algorithm

In this paper an iterative probabilistic, parity-check based decoding algorithm [18], with a modification
given in [10], is applied. The algorithm consists of a number of rounds, each composed of several itera-
tions. First, for each of N observed keystream bits, a set of preferably orthogonal parity-checks is first
determined. The algorithm starts with the observed keystream sequence {z;}{\., and with p < 0.5 as the
prior probability of error for each bit. The observed keystream sequence is then iteratively modified to

yield the reconstructed LFSR sequence. Each iteration consists of the following major steps: -

o Step 1: For each 2;,4 = 1,..., N, calculate the parity-check values.

e Step?: Use the parity check values for each z; to compute the posterior probability of error, p;,
using the posterior probabilities of error from the previous iteration as the prior probabilities in the
current iteration, see [10].

e Step 3 (error-correction): If p; > 0.5, then set z; = z; ® 1, and p; =1—p;, i =1,...,N

If p is not too close to 0.5, then most of the error probabilities typically quickly converge to zero,
and the number of errors is reduced, but not necessarily to zero. Further errors can be correéted by
resetting the error probabilities to p and repeating the algorithm for several rounds. Finally, a simple
(sliding window) information set decoding technique is used to recover the LFSR initial state. In fact,
we apply an improved algorithm with the so-called fast resetting and with the sliding window technique

incorporated in the rounds, see [10].

3 Systematic Procedure for Fast Correlation Attacks on Com-

biners with Memory

This section of the paper outlines the procedure for attacking combiners with memory. The procedure
consists of four main stages. Firstly, of all the nonzero linear functions of at most m + 1 successive output
bits, and all the linear functions of at most m+1 successive input binary vectors, a pair of input and output
linear functions with the maximum possible or a comparatively large correlation coefficient is determined.
(NOTE: there may be more than one pair of functions with the maximum correlation coefficient.) This
can be achieved by exhaustive search (if feasible), by the LSCA method or by analytical methods. In the
second stage, parity-check polynomials are generated. Sufficiently many low-weight polynomial multiples
of the least common multiple of the LFSR feedback polynomials involved in the input linear function
(identified in first stage) have to be generated. A polynomial residue method based on the birthday
paradox is used for this. The third stage is the application of the iterative error correction algorithm.
The ihputs required by the algorithm are: an observed keystream sequence or a linear transform of it, the
correlation coefficient (determined in the first stage) and the set of parity-check polynomials (deterrrﬁned
in the second stage). If the attack is successful, the output of the algorithm is a linear transform of

input sequences, corresponding to one of the input linear functions identified in the first stage. The final

105

stage of the procedure involves a search for the correct input linear function, and solving a set of linear
equations to determine the secret key. The four stages, and the relationships between them, are shown

in Figure 1.

4 Cryptanalysis of the Summation Generator with Three and

Five Inputs

4.1 Description of the summation generator

The summation generator [20], [16] is a binary nonlinear combiner with memory whose internal state
variable, the carry, takes integer values from the set [0,n — 1], where n is the number of inputs. An
initial value for the carry is assumed: zero, or any value from [0,n — 1]. The memory size in bits is thus
m = [log,n]. Let X; = (z1,¢,...,%n,) and y; denote the n input bits and one output bit at time ¢, and
let S; and St(o) denote the carry and the least significant bit of the carry at timé t, respectively: Then
the output and the next-state functions of the summation generator are, for ¢ > 0, defined by

n
Yy = @ zis ® SO)

i=]

Siq1 = l(g Tit + St) / 2J (4)

with modulo 2 summation in (3) and integer summation in (4). The iﬂput sequences are defined as the
LFSR sequences generated from distinct primitive feedback polynomials. The LFSR initial states are
controlled by the secret key, and the initial carry, Sp, is either fixed or also controlled by the secret key.
Due to the binary summation in (3), the summation generator is maximum-order correlation immune
[20], that is, for any given initial carry, the output sequence is (statistica]ly) independent of any proper
subset of the input sequences, where these are assumed to be purely random. As a consequence, any
linear transform of the input sequences that is correlated to a linear tfansform of the output sequence

must involve all input sequences.

4.2 Theoretical analysis

The essence of the LSCA method [8] is in finding good linear approximations to the output and component
next-state functions, and solving the resulting linear sequential circuit. In the case of the summation
generator, the output function is already linear, and the least significant carry bit can be approximated as
1 with correlation coefficients 1/3 and —2/15 for three and five input summation generators, respectively,
according to the asymptotic probability distribution derived in [24]. These correlation coefficients are
large enough to apply the fast correlation attack. In fact, for the three input summation generator,

the correlation coefficients between all linear functions of three (m + 1) successive outputs and inputs,

106

5,4Sd7130
s
fenmg
(USTO1730)) UOREam0)) 2
) .
- Spoy)d
m=°me&=g Eﬂ—amhcm—d\ spErmo gﬁO& m—ﬁmEO——h—O d suonouny POYIOA 4
JEJUI| 9A[0S |- uoBNMIO]) IHRNFEI | yoayy-Apreg | TN T mdly| [EIdpeuy
1 - WEANSASY JO JOJay - : 10 VIS I
puB Ydaeds ULIOJSTRI], QANIBI)] 9je.lRudy) 10 YoIBag
PRLIPOI
wBansA9y] Jo suonoum,y
UIIOJSUBI], JBoUI]
Teaury ULIOJSUBI], | mdinQ
Teaury -~ Teonskay
w
A -
-~ ;e
X

AIOWSW [PIM JSUIGUIOD [eIouas v

Figure 1: A systematic procedure for applying fast correlation attacks to' combiners with memory.

107

were computed, and the largest absolute value obtained was 1/3, well distinguished from the next closest
coefficients. In addition, the output bit complemented is correlated to only one input linear function (the
binary sum of the current input bits) with correlation coefficient 1/3. Accordingly, the iterative error-
correction algorithm as described in Subsection 2.3 should, if successful, modify the keystream sequence
to converge to this linear transform. In the case of summation generator with five inputs, there exist
six and sixteen input linear functions correlated to the output bit with correlation coefficients equal or
close to 2/15 and to —2/15, respectively. The feedback polynomial of the resulting LFSR sequence to be
reconstructed, see Subsection 2.1, is the product of the feedback polynomials of the input LFSRs, assumed
to be primitive, distinct and known to the cryptanalyst. The parity-checks to be used in the attack can
be obtained by the method described in Subsection 2.2. According to the convergence condition [19],
the minimum number of of parity-checks of weight w required per keystream bit depends only on the
correlation coefficient and w. However, in our case more are required because the parity-checks are not
quite orthogonal, the output sequence length is minimised (and hence close to the maximum degree of
the parity-check polynomials used) and the errors are not memoryless as in the BSC model. For large r
and a fixed parity-check weight w, both the keystream sequence length required and the computational
complexity are O(27/(*~1)), and for éach r there is an optimal weight w that minimises the computational

complexity.

4.3 Experimental results

For the three input summation generator experiments were conducted on four different generators (dif-
ferent LFSR lengths and tap settings). Similarly, for the five input summation’generator, two different
generators were used. For each Vgenerator, twenty LFSR initial states were generated randomly; the
keystream produced and the attack conducted for each state. For the three and five input summation
generators, experiments were conducted with parity-checks predominantly of weight six and seven, or
five, respectively (depending on r). For each of the 20 initial states, both the number of parity-checks
and the keystream length used were minimised. For successful experiments, the degree r; the weight Wp
of the product feedback polynomial; the weight w, average number K,,, maximum number Ko, and
maximum degree M, of the parity-check polynomials used, and also the keystream sequence length N
are all shown in Tables 1 and 2. The parity-checks used were not necessarily orthogonal.

For comparison, the keystream length required and the computational complexity of the divide-and-
conquer attack [5], the 2-adic complexity attack [15] and the fast correlation attack on both three and
five input summation generators (aésuming for simplicity that the LFSR lengths are equal), are shown in
tables 3 and 4 respectively. These tables demonstrate the improvement provided by the fast correlation

attack.

108

Table 1: The three input summation generator - parity-check polynomial information and keystream

sequence length.

T |wp | w | Koy | Koz | Mmas N
5| 4 | 6 | 559
30|17 [6] 425 | 518 | 585 | 292
7| 282 | 282 | 250
5| 13 [152 | s00
3419 | 6| 146 | 20 | sa9 | 2095
7 | 5360 | 5045 | 650
6] 19 | 19 | s30
38119 75360 5045 | 650 |2
aa |17 | 7 | 2600 [2600 | 1800 [2157

Table 2: The five input summation generator - parity-check polynomial information and keystream

sequence length.

T |wp | w| Koo | Kmaz | Mpas | N
51 8338 | 9272 | 3915

30113/ 6| 508 | 598 | 604 | 2121
7] 130 | 130 | 223

40 | 21 || 5 | 14800 | 14800 | 24968 | 2149

Table 3: Comparing complexity of attacks, 3 input summation generator.

Div. and Conq. | 2-adic | Fast Corr.
Required Length O(r) o@2®) | o@’
Complexity of Attack 0(2%/3) o@2*/3) | 0(24)

Table 4: Comparing complexity of attacks, 5 input summation generator.

Div. and Cong. | 2-adic | Fast Corr.
Required Length o(r) o(2™%) | 0274
Complexity of Attack 0(2%/5) o@2¥/%) | 0274

109

5 Cryptanalysis of the Nonlinear Filter Generator

5.1 Description of the Nonlinear Filter Generator

The nonlinear filter generator (NLFG) consists of a single regularly clocked binary linear feedback shift
register (LFSR) of length r and a nonlinear Boolean function f of n input variables. The keystream is
generated by applying f to the output of n stages of the LFSR. Let the LFSR output sequence be denoted
as a = {a;} and the sequence of inputs to the filter function as X = {X;}, Xi = {z:1,%i2,---,Tin}
defined as X; = {@it~;,---Bitva }» Where the tapping sequence ¥ = (71)7; is an increasing sequence
of nonnegative integers such that v, < r — 1. The generator output sequence is denoted z = {2;}, with

z; = f(X;). For cryptographic properties of NLFGs, see [20]. Also, the NLFG can be viewed as a finite

input memory combiner with one input and one output, with memory size given by M = vy, — 7 [9].

5.2 Theoretical analysis

In this section, the security of the NLFG with respect to the procedure proposed in Section 3 is in-
vestigated. The observed segment of the keystream sequence z = {z;}\, is regarded as a noisy ver-
sion of a segment of a nontrivial linear transform of the unknown LFSR sequence a, that is, z; =
U(X;) + e, where I(X;) = 325, €45, ¢; € {0,1}, not all ¢; are equal to zero, the summation is modulo
two and {e;}¥; is a segment of a binary noise sequence with Pr(e; = 1) =p < 0.5 foreachi =1,2,...,N.
The corresponding correlation coefficient is defined as ¢ = 1—2p > 0 and is equal to the correlation coef-
ficient between f and [, that is, p = Pr(f # I). Note that any (feedforward) linear transform of a is also
a linear recurring sequence satisfying the same feedback polynomial as a.) -

The linear function ! specifying a linear transform of a is to be determined by the attack. The
correlation coefficients between f and all the linear functions of the same n variables are precomputed by
the Walsh transform technique [20] with computational complexity O(n2"). Let £1 and £~ denote the
sets of linear functions with positive and negative correlation coefficients, respectively. Since the success
of the attack predominantly depends on how large c is, if the maximum absolute value of ¢ is associated
with the set £, the complement of the keystream is used in the attack. For a fixed value of n, thé value
of p varies depending on the particular Boolean function used as a filter. In general, for random balanced
functions, the expected value of p increases as n increases.

The set of parity-checks used is formed from phase shifts of the parity-check polynomials, these are
obtained by repeated squaring of the LFSR feedback polynomial, assumed to have a low weight. If
the LFSR polynomial does not have a low weight (e.g., if its weight is 10 or bigger), then the method
described in Subsection 2.2 can be applied to obtain low-weight polynomial multiples [7]. In any case,
if the weight of the parity-checks used is not low, then more such parity-checks are required and the
complexity of the fast correlation attack may become prohibitively high. The iterative probabilistic
error-correction algorithm described in Subsection 2.3 is used to make modifications to the keystream

sequence to reconstruct a linear transform of the LFSR sequence a.

110

The final stage of the systematic procedure involves recovering the unknown LFSR initial state. The
reconstructed LFSR seqﬁence can be obtained as a linear transform, ! € £+, or I € £~ of the original
LFSR sequence a, depending on whether the keystream or its complement is used in the attack. Thus
all such candidate linear transforms should be tested, in order of decreasing correlation coefficients.
Consequently, for any assumed [, the candidate LFSR initial state is obtained from any r consecutive bits
of the reconstructed LFSR sequence by solving the corresponding nonsingular system of linear equations.
Each candidate initial state is then used to generate a candidate keystream by the known filter function
which is compared with the original keystream. If they are identical, then the correct LFSR initial state

is found and is very likely to be unique.

5.3 Experimental results - random balanced filter functions

In these experiments, we used a 63-bit LFSR with a primitive feedback polynomial, 1+ + 23, of weight
three and a set of parity-checks formed from the phase shifts of the parity-check polynomials obtained by
repeated squaring of the LFSR feedback polynomial. The attack works similarly on larger LFSR léngths.
The experiment was conducted for n = 5,6,7,8, and 9. For each n, the experiments were performed for
both consecutive (CONS) and full positive difference set (FPDS) tapping sequences. Note that FPDS
tapping sequences are much more resistant to the conditional correlation attack [3] and the iﬁversion
attack [9]. Also, two different parity-check (polynomial) sets were used: a set of 6 parity-checks and the
observed keystream length of 2500 bits and a set of 9 parity-checks and the observed keystream length
of 20000 bits. For each of these four sets of conditions (tapping sequence and number of parity-checks)
and each n, ten different balanced filter functions and twenty different nonzero LFSR initial states were
randomly chosen.

Our main observation is that the iterative error-correction algorithm, if successful, mainly converges
to one of the best linear transforms of the original LFSR. sequence, or to a linear transform that is close
to being the best with respect to the correlation coefficient absolute value. Figure 2 shows the success
rate of the performed attacks for various values of the theoretical probability of noise, p, under each set
of conditions. The value of p was obtained by rounding the probability of noise for randomly chosen filter
functions. As expected, the graph shows that the proportion of successful attacks generally decreases
as the probability of noise, p, increases; that the success of the attack is practically independent of the
tapping sequence; and that for a given p, increasing the number of parity-checks and consequently the
observed keystream length increases the success rate. Irregularities in the graph are due to the small

number of filter functions for particular values of p.

111

100 T T T T T T T T T T .
N
g &r \ i
2 \
\,
- N\
5 i -
] \\
5 ‘
£ \
2 \\
g \]
g 4Yr \
b \
2 £
=4
2 N
* Sl parity-checks and CONS, ~— \\ .
6 panty-checks and FPDS ~~—
9 parity-checks and CONS. ----- \\
9 parity-checks and FPDS, ~— \
\,
1 1 R] [i [i il 1 1 . N N

0 -
0.28 0.29 03 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 039 04 041 042 043 044 045
R HRA Probability of noise

Figure 2: Success rate versus theoretical noise probability p.

6 Cryptanalysis of the Multiplexed Sequence Generator

6.1 Description of the Multiplexed Sequence Generator
A class of binary pseudorandom sequences for cryptographic and spread spectrum applications called the
multiplexed sequences was proposed and analysed in [12, 13, 14]. Their use has also been recommended
in an EBU standard for video encryption for pay-TV [1]. Multiplexed sequences are generated by a
simple and fast scheme consisting of two linear feedback shift registers and a multiplexer whose address
is controlled by one of the shift registers and whose inputs are taken from the other. They were shown
to possess good standard cryptographic properties such as long period, high linear complexity and low
out-of-phase autocorrelation.

Multiplexed sequences are defined here as a slight generalisation of the class of binary sequences
introduced and analysed in [12]. Let a = (a(t))i2, be a binary maximum-length sequence of;'period

P, =27 —~ 1, n > 1. The multiplexed sequence b is defined by
b(t) = alt +7(X(®)), t20 ()

where X = (X(t))2, is a periodic integer sequence with period P, = 2™ — 1, m > 1, such that
{0,..., K —1} is the range of values of X, and v is an injective mapping {0,...,K — 1} = {0,...,n—1},
K > 2. Clearly, the multiplexed sequence b can be generated by a multiplexer scheme with X defining
the addresses and y(X) defining the stages of the shift register LFSR1 producing a that are used as
the inputs to the multiplexer, where X is formed from k stages of another linear feedback shift register
LFSR2 with a primitive feedback polynomial, as is suggested in [12]. In this case, K = 2F for k <m -1,
and K = 2% — 1 for k = m.

112

Multiplexed sequences possess a crosscorrelation weakness: there is a termwise statistical dependence
between the output sequence b and the corresponding phase shifts of the sequence a [11]. More precisely,
the correlation coefficient between the random variables b(t) and a(t 4 At) is equal to the probability that
b(t) is chosen to be the same random variable as a(t + At) for any At € T', whereI' = {7; : 0 <i < K -1}
and 0 <y <7 < -+ < Yg—1 < n — L. Therefore, for any At € I" the correlation coefficient is equal to
1/K, independently of ¢. Although K can be made as large as n, this correlation is large enough to be

taken into account with respect to the fast correlation attacks.

6.2 Experimental results

In the experiments, we used a 63-bit LFSR with a primitive feedback polynomial, 1 + x + 2%, of weight
three as LFSR1 and a 59-bit LFSR with a primitive feedback polynomial 1+ 2 + z* + 27 + 25 of weight
five as LFSR2. A set of parity-checks, formed from phase shifts of the parity-check polynomials obtained
by the repeated squaring of the LFSR1 feedback polynonﬁal, were used. The experiment was conducted
for K = 4 and 8. For each K, the experiments were performed for two tapping sequences I': consecutive
(CONS) and full positive difference set (FPDS). Note that the FPDS tapping sequences are much more
resistant to the collision test [2]. For each value of K and tapping sequence, twenty and five different
nonzero LFSR initial states were randomly chosen for LFSR1 and LFSR2, respectively.

Our main observation is that the iterative error-correction algorithm, if successful, mainly converges
to one of the phase shifts of the sequence a with maximum empirical correlation coefficient.

Table 5 shows the success rate of the performed attacks for various values of the theoretical probability
of noise, p = (1 - 1/K)/2, under each set of conditions. As expected, Table 5 shows that the proportion
of successful attacks generally decreases as the probability of noise, p, increases; that the success of the
attack is practically independent of the tap setting; and that for a given p, increasing the number of
parity-checks and the output length increases the success rate. For each tap setting, CONS and FPDS,
the success rate of the experiments as a function of the number of taps, K, on LFSR1, the number of
polynomial multiples used, #PM, the probability of noise, p, and the keystream sequence length, N, is
shown in Table 5.)

Table 5: Success rate of fast correlation attack to the multiplexed sequence generator.

K D #PM N CONS | FPDS
4 | 037 8 5000 | 52% 68%
4 | 0375 8 10000 | 98% | 100%
8
8

0.4375 10 35000 | 68% 68%
0.4375 11 65000 | 94% 99%

113

7 Conclusions

A systematic procedure for applying the fast correlation attack to combiners with memory is presented.
This procedure has four main stages. Firstly, linear input and output functions with the maximum
possible or comparatively large correlation coefficients are identified, by the LSCA method using the
asymptotic probability distribution of the internal state vector (as in the case of summation generator),
by searching via the Walsh transform technique (as in the case of nonlinear filter generator), or by
applying analytical methods as in the case of the multiplexed sequence generator. In the second stage,
the required low-weight parity-check polynomials are formed; in the case of the summation generator,
these are based on the input linear function(s) identified in the first stage. In the third stage, the fast
correlation attack is applied to the linear transform of the observed keystream sequence and finally, if the
attack is successful, the initial state of the input LFSRs are determined, by searching through solutions
of linear equations corresponding to the input linear functions determined.

This procedure is succéssfully applied to several keystream generators: both three and five input
summation generators, nonlinear filter generators and multiplexed sequence generators. In eac-h case,
the derived maximum correlation coefficients are large enough to apply the fast correlation attack to
the observed segment of the keystream sequence, to reconstruct the initial state of the input LFSRs.
For success, sufficiently many low-weight parity-check polynomials, corresponding to the input linear
function(s) identified in the first stage, have to be generated. In most cases considered, there exist multiple
input linear functions with the maximum correlation coefficient correlated to the same output linear
function. However, the existence of multiple linear approximations did not confuse the fast correlation
attack and the modified keystream sequence converged to one of the best linear functions. Successful

experimental results are systematically obtained in all the cases.

References
[1] Specification of the systems of the mac/packet family. technical document 3258-e, October 1986.
[2] R. J. Anderson. Solving a class of stream ciphers. Cryptologia, 14(3):285-288, 1990.

[3] R. J. Anderson. Searching for optimum correlation attack. In Fast Software Encryption - Leuven
’94, volume 1008 .of Lecture Notes in Computer Science, pages 137-143, 1995.

[4] V. Chepyzhov and B. Smeets. On a fast correlation attack on stream ciphers. In Advances in
Cryptology - EUROCRYPT ’91, Lecture Notes in Computer Science, pages 176-185. Springer-Verlag,
1991.

[5] E. Dawson and A. Clark. Divide and conquer attacks on certain classes of stream ciphers. Cryptologia,

18(1):25-40, 1994.

114

[6] J. Dj. Golié. Correlation via linear sequential circuit approximation of combiners with memory. In
R. A. Rueppel, editor, Advances in Cryptology - EUROCRYPT ’92, volume 658 of Lecture Notes in
Computer Science, pages 113-123. Springer-Verlag, 1993.

[7] J. Dj. Goli¢. Computation of low-weight parity-check polynomials. Electronics Letters, 32(21):1981~
1982, 1996.

[8] J. Dj. Golié. Correlation properties of a general binary combiner with memory. Journal of Cryptology,
9(2):111-126, 1996.

[9] J. Dj. Golié. On the security of nonlinear filter generators. In D. Gollmann, editor, Fast Software
Encryption - Cambridge 96, volume 1039 of Lecture Notes in Computer Science, pages 173-188,
1996.

[10] J. Dj. Golié, M. Salmasizadeh, A. Clark, A. Khodkar, and E. Dawson. Discrete optimisation and
fast correlation attacks. In E. Dawson and J. Golié¢, editors, Cryptography: Policy and Algorithms,
volume 1029 of Lecture Notes in Computer Sciehce, pages 186-200. Springer-Verlag, 1996.

[11] J. Dj. Golié, M. Salmasizadeh, and E. Dawson. Autocorrelation weakness of multiplexed sequences.
In International Symposium on Information Theory and its Applications 1994, volume 2, pages
983-987. The Institution of Engineers, Australia, 1994.

[12] S. M. Jennings. A special class of binary sequences. PhD thesis, University of London, 1980.

[13] S. M. Jennings. Multiplexed sequences: some properties of the minimum polynomial. In T. Beth,
editor, Proc. Workshop on cryptography, Burg Feuerstein, 1982, volume 149 of Lecture Notes in
Computer Science, pages 189-2061. Springer-Verlag, 1983.

[14] S. M. Jennings. Autocorrelation function of the multiplexed sequences. IEE Proc. F, 131:169-172,
April 1984.

[15] A. Klapper and M. Goresky. Cryptanalysis based on 2-adic rational approximation. In Advances
in Cryptology - CRYPTO °95, volume 963 of Lecture Notes in Computer Science, pages 262-273.
Springer-Verlag, 1995.

[16] J. L. Massey and R. A. Rueppel. Method of, and apparatus for, transforming a digital sequence into
an encoded form, u. s. patent no. 4,797,922, 1989.

[17] W. Meier and O. Staffelbach. Fast correlation attacks on certain stream ciphers. Journal of Cryp-
tology, 1(3):159-167, 1989.

[18] M. J. Mihaljevi¢ and J. Dj. Goli¢. A comparison of cryptanalytic principles based on iterative error-
correction. In D. W. Davies, editor, Advances in Cryptology - EUROCRYPT ’91, volume 547 of
Lecture Notes in Computer Science, pages 527-531. Springer-Verlag, 1991.

115

[19] M. J. Mihaljevi¢ and J. Dj. Goli¢: Convergence of a Bayesian iterative error-correction procedure on
a noisy shift register sequence. In R. A. Rueppel, editor, Advances in Cryptology - EUROCRYPT
92, volume 658 of Lecture Notes in Computer Science, pages 124-137. Springer-Verlag, 1993.

[20] R. Rueppel. Analysis and Design of Stream Ciphers. Springer-Verlag, Berlin, 1986.

[21] R. A. Rueppel. Correlation immunity and the summation generator. In Advances in Cryptology -
CRYPTO ’85, volume 218 of Lecture Notes in Computer Science, pages 260-272, 1986.

[22] T. Siegenthaler. Correlation immunity of nonlinear combining functions for cryptographic applica-
tions. IEEE Inform. Theory, IT-30:776-780, September 1984.

[23] T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext only. IEEE Trans. Comput.,
C-34:81-85, January 1985.

[24] O. Staffelbach and W. Meier. Cryptographic significance of the carry for ciphers based on integer
addition. In Advances in Cryptology - CRYPTO 90, volume 537 of Lecture Notes in Computer
Science, pages 601-614, 1991,

[25] G. Z.Xiao and J. L. Massey. A spectral characterization of correlation-immune combining functions.
IEEE Trans. Inform. Theory, IT-34:569-571, May 1988.

116

