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Abstract

We show two practical attacks against the Akelarre block cipher. The best
attack retrieves the 128-bit key using less than 100 chosen plaintexts and 242
off-line trial encryptions. Our attacks use a weakness in the round function
that preserves the parity of the input, a set of 1-round differential character-
istics with probability 1, and the lack of avalanche and one-way properties
in the key-schedule. We suggest some ways of fixing these immediate weak-
nesses, but conclude that the algorithm should be abandoned in favor of
better-studied alternatives.

1 Description of Akelarre

Akelarre [AGMP96A, AGMPY96B] is a 128-bit block cipher that uses the same
overall structure as IDEA [LMM91}; instead of IDEA’s 16-bit sub-blocks Akelarre
uses 32-bit sub-blocks. Furthermore, Akelarre does not use modular multiplica-
tions, but instead uses a combination of a 128-bit key-dependent rotate at the
beginning of each round, and repeated key additions and data-dependent rota-
tions in its MA-box (called an “addition-rotation structure” in Akelarre). 1

Akelarre is defined for a variable-length key and a variable number of rounds. The
authors recommend using Akelarre with four rounds and a 128-bit key; this is the
version that we will cryptanalyze.

1.1 Encryption

An Akelarre encryption consists of an input transformation, a repeated round
function, and an output transformation (see figure 1).

The input transformation is defined as follows:

!'Data-dependent rotations were first used by Madryga [Mad84] and more recently in RC5
[Riv95].
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Figure 1: Overview of the Akelarre block cipher
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(1) The 128-bit plaintext is divided into four 32-bit sub-blocks: X, X5, X3,
and X4.

(2) These sub-blocks are combined with four sub-keys (all subkeys are defined
as Z @ , where i is the round and j indicates the 7** sub-key used in round $):

R§°’ = X1+ Zfo) mod 232

RY = X,@z
RY = X;@2z
RY = X,+ 2" mod 2%

These four sub-blocks provide the input to round 1.

Akelarre has v rounds. Each round (i = 1,...,v) consists of the following steps:
(1) The four input sub-blocks Rgi_l) , Rgi_l), Rgi_l), and Rg_l) are concate-
nated into one 128-bit block.

(2) The 128-bit block is rotated left a variable number of bits determined by
the least significant seven bits of ZF).

(3) The rotated 128-bit block is divided into four 32-bit sub-blocks: S, S,
@ . 1 o)
837, and S;”.

(4) Pairs of sub-blocks are XORed to provide inputs to the addition-rotation
structure:

PO s
, Pz(i) - Sg) ® Sg)

...
I

(5) Pl(i) andfPéi) are combined with twelve 32-bit sub-keys, ZZ(,i), Zgi), Zﬁ,,),
according to the addition-rotation structure described later. The output of
this structure consists of two 32-bit sub-blocks Q(’) and Q(’)

(6) The four sub-blocks from Step 3 are XORed with the outputs of the addltlon-
rotation structure:

Ry = 5P Q)
Rgi) — Sgi) @Qgi)
Ry = 5P oqf
By = 5{eqf

The sub-blocks R(z) . ,Rgi) form the output of the round function.
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The output of the final round forms the input to the output transformation, which
consists of the following steps:

(1) The output blocks of the v*® round are concatinated into one 128-bit block.

(2) The 128-bit block is rotated left a variable number of bits determined by
the least significant seven bits of Z(”'H)

(3) The rotated 128-bit block is divided into four sub-blocks: S(v+1) S("'H)
S(v+1) and S(v+1)

(4) The four sub-blocks are combined with four final sub-keys:

Y = 8P 4z mod 2%
Yy = S§v+1) ® Z§v+1)
Ys = S§v+1) ®Z£v+l)
Y, = SU 4z mod 2%

(5) The four sub-blocks, Y3, Y2, Y3, and Y; are concatenated to form the cipher-
text.

All that remains is to specify the addition-rotation structure. We describe this
for completeness sake; our attack does not rely on any property of the addition-
rotation structure. The structure is formed by two columns; Pl(’) is the input to

the first column and Py) is the input to the second column. Each columnkw'orks
as follows:

(1) The high 31 bits of P}i) are rotated left a variable number of bits.
(2) The 32-bit output of the previous step is added to a sub-key.

(3) The low 31 bits of the result of the previous step are rotated left a variable
number of bits.

(4) The 32-bit output of the previous step is added to a sub-key.

(5) The high 31 bits of the result of the previous step are rotated left a variable
number of bits.

(6) The 32-bit output of the previous step is added to a sub-key.

(7) Steps 3 through 6 are repeated until there have been seven rotations and
six sub-key additions total.

(8) The outputs of the two column are Q&i) and Qgi).
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Figure 2: Overview of the Akelarre key schedule

The sub-keys added in the first column are Z{?, Z", ... 2%, the sub-keys added

in the second column are Z(’) Z(z) . Zg).

Let X[a..b] be the number formed by taking bits a through b from the integer X
(where we start our bit numbering at 0 for the least significant bit). The rotation
amounts of the second column are determined by P( ?): the first rotation amount
is P(‘) [4..0], the second rotation amount is P(’) [9 .5], the third rotation amount is
P(') [14..10], the fourth rotation amount is Pl [19 .15], the fifth rotation amount
is P(') [23..20], the sixth rotation amount is P{”[27..24], and the seventh rotation
amount is Pl( [31..28]. The rotation amounts in the first column are determined
in the same manner from Q.

1.2 Key Schedule

Akelarre requires 13v + 9 sub-keys (four for the input transformation, 13 for each
of the v rounds, and five for the output transformation). These 32-bit sub-keys
are derived from a master key. The length of the master key can be any multiple
of 64 bits, although we limit our discussion to 128-bit master keys, which is
the key size suggested in [AGMP96A]. The description of the key schedule in
[AGMP96A] and [AGMPY6B] are different; we base our discussion on the more
extensive description in [AGMP96A].

An overview of the key schedule is shown in figure 2. First, the master key is
divided into eight 16-bit sub-blocks, called k; for i = 1,...,8. Each sub-block
is squared (yielding a 32-bit result), and then added mod 232 to a constant,

Ao = A49ED284(1) and A; = 735203DE(q). Let k") := k2 + Ap mod 2%% and
K" = B2 + Ay mod 22,

The first eight sub-keys are generated as follows: The outermost bytes of kz(l)
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form the two high-order bytes of sub-key K;; the outermost bytes of kéz rzlo d8)+1
form the two low-order bytes of sub-key K;. Thus, sub-key K; is a function of
only k; and k(z mod 8)+1-

The innermost bytes of kgl) are squared and added modulo 232 to A4g to generate
k(z) and similarly the innermost bytes of k( ) are squared and added modulo 232
to Ap to generate k( ). The second eight sub-keys are generated in the same way
the first eight were. For i =9,...,16, the outermost bytes of k( ). form the two
high-order bytes of sub-key Kz, the outermost bytes of ka n)nod 8)+1 form the two
low-order bytes of sub-key K;.

This process is repeated every round of the key schedule squares the middle

bytes of the k,(J ) and k,(J ) values and generates 8 additional sub-keys, untill all 61
required sub-keys have been generated.

After calculating all the K; sub-keys, they are read sequentially to fill the Z J(i) keys
required for encryption; decryption keys are derived from these keys as required.

2 Cryptanalysis of Akelarre

The pivotal observation is that the round function preserves the parity of the
input. The 128-bit rotate does not influence the parity. The subsequent addition-
rotation structure XORs each of its outputs twice into the data blocks, thus pre-
serving parity. The only operations in Akelarre that affect the parity of the input
are the input transformation and the output transformation. This allows us to
attack the key blocks involved in those transformations urespectlve of the other

properties of the round function. '

We implement a chosen plaintext attack in four phases. In the first phase, we find
most of the bits of two of the sub-keys of the output transformation. In the second
phase, we find most of the bits of two of the sub-keys of the input transformation.
In the third phase, we exploit the key schedule to recover 80 bits of information
about the master key. In the fourth phase, we exhaustively search through all
remaining possible master keys.

2.1 Recovering Output Transformation Sub-Key Bits

We start by fixing X; = 0 and X4 = 0, and encrypting many blocks with random
values for X3 and X3. Let P(-,-,...) denote the parity of the concatenation of all
its arguments (sum all the bits modulo 2). We define:

ko= PO, 20,20, z9)
= P(X2,X3)
ro= PR, B
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It is easy to see that r = k @ z.

As the round function is parity-invariant, we have r = P( Rg"), . R‘(f) ) after v
rounds, and thus r = P(S"H), ., g{r+i)y,

Let K; := —Zg’"'l) mod 232, and K := -—Zg’ﬂ) mod 232, This gives us
r="P(("1 + K1) mod 22, Y, © 28", Yy @ 20"V, (¥, + K4) mod 2%2)
Collecting all our formulae, we get
- P((Y1+ K1) mod 2%, (Y, + K4) mod 2°) =K @z @y (1)

where ¥ := k @ P(Z{"*V, Z8™Y) and y == P(Ys,Ys). We define for any K,
K* := K[30..0] to be the number formed by the least significant 31 bits of K. By
splitting of the most significant bits of the sum we can rewrite equation 1 as

P+ K.Y, +K])=k'®z 0y (2)

where k" := k' @ K;[31] ® K4[31] and y' := y @ Y;[31] @ Y4[31]. The value k"
depends only on the key, and will be the same for all of our encryptions. The
values z and y' are known, as they only depend on the plaintext or ciphertext.

If we find two ‘encryptions i and § which have the same value for Y! (e Y3 =
Y{;), then we can derive a sum-parity relation for K3. We get

PYi; + K @ P(Yy; + K}) =2, 03; 0y, © 3 (3)

Such an equation eliminates about half of the possible values for Kj. After 4.10°
chosen plaintexts, we can expect about 37 separate collisions for Y, and thus
about 37 sum-parity relations for K. We can now exhaustively search the 23!
possible values of K for a value that satisfies all of the parity relations. Numerical
experiments indicate that 37 relations are usually enough to give a unique solution.
Once K7 has been found, every encryption that was done provides an equivalent
sum-parity relations for Ky, which allows us to exhaustively search for K3t. (The
order can of course be reversed, with collisions on Y} giving sum-parity relations
for K7, which allows us to recover K7 first.)

Overall, this phase of the attack requires about 4 - 10° chosen plaintexts, and
2%2 exhaustive search steps to recover both K} and Kj. Several refinements
are possible. The key schedule cannot generate all 232 possible sub-keys; this
information can be used to speed up the exhaustive search. As will be obvious
from the key schedule, the possible sub-key values can be enumerated by listing
the possible values for the two halves of the sub-key separately. This results in
about 2?° possible values for the least significant 31 bits of the sub-keys in the
output transformation. (This assumes a 4-round Akelarre. Due to the nature
of the key schedule, the entropy of the sub-keys in the output transformation
decreases as the number of rounds increases.) '
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The last phase in our attack is an exhaustive search over 2*® possible master keys
(see section 2.4), which requires a complete Akelarre encryption per possible mas-
ter key. Checking 2°° possible key values using sum-parity relations is certainly
going to be a lot less work. This leads to the following improvement: Using only
60 chosen plaintexts, we search for for K{ and K} in parallel using equation 2.
There are about 2%° possible values for each of these two values, which gives us
a total of 250 possible values for the pair. We can expect to find the right values
(that satisfy all the sum-parity relations) in about 2%9 tries. The computational
effort in this phase is still negligable compared to the effort required in the last
phase of our attack, as each of the operations in this phase is far less complex.

The search can be improved even further if we take the non-uniformity of the
key-block distribution into account. From the key schedule it is easy to derive the
probabilities for each of the 2%° possible sub-keys. This can be done by computing
independent probabilities for each of the two halves of the sub-keys. Our results
indicate that this leaves about 23.5 bits of entropy for each of the K* values. By
searching the high-probability values first we can expect to find the correct key
values sooner.

2.2 Recovering Input Transformation Sub-Key Bits

We can recover the 31 least significant bits of Zl(o) and Z,§°) as well.. We could, of
course, perform the analysis from the previous section on the decryption function, -
but there are much more direct methods.

Once we have recovered K} and K}, we can recognise whether two encryptions
have the same parity during the rounds. (We can decrypt enough of the output
transform; the key bits that we don’t know affect the parity in the same way
for each encryption.) Choose fixed values for X3, X3, and X3, and perform
encryptions for different values of X4. This gives us sum-parity relations for Z; (0)«
similar to equation 3. Using the same methods as in the previous step, we can
thus recover the 31 least significant bits of Z(O) , and Zl(o), using 232 exhaustive
search steps and about 80 chosen-plaintexts. '

A more direct method is also possible, where every chosen plaintext encryption
reveals one bit of Z(o)* or Z; (0 This eliminates the exhaustive searches for these
31-bit values, and reduces the number of chosen-plaintexts for this phase to 62
The details of this method are left as an excersise to the reader.

2.3 Recovering Master Key Information from the Sub-Keys

We have recovered the 31 least significant bits of 4 of the sub-keys. Due to the
structure of the key schedule, each half of a sub-key depends on exactly 16 bits
of the master key.

Table 1 give the expected information provided by the partially known sub-keys
about the master key blocks, assuming that the master key is chosen uniformly
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Sub-key upper half lower half
Zl(o)* 11.99 bits about k; 12.85 bits about ks
Z*  11.99 bits about k4 12.85 bits about ks
ZS*  11.52 bits about ky 12.01 bits about ks
Zés)* 11.52 bits about ks 12.01 bits about kg

Table 1: Bits of information provided by sub-key about master sub-keys

at random. As the mapping from a master key block to one half of a sub-key is
not bijective, not all 216 possible values of the sub-key half can occur. In fact,
each 32-bit sub-key has between 24.1 and 25.7 bits of entropy.

Some of the master key blocks influence two of the recovered sub-keys. In this
case we can expect to be left with a single possible value for this master key block.
(As there are only 16 bits in a master key block, we can’t have more than 16 bits
of information about it.)

An interesting observation is that the amount of information that we get about
the master key depends eratically on the number of rounds, due to the alignment
of the known sub-keys in the key schedule. In some cases the known sub-keys are
all derived from 4 of the master key blocks, while in other cases they are derived
from 7 master key blocks. If we increase the number of rounds to 5, we can expect
to get about 7 bits more information about the master key blocks, making the
5-round Akelarre significantly weaker against our attack than the 4-round version.

2.4 Recovering the Entire Master Keéy

Adding up the information that we get, we can expect to have 80 bits of infor-
mation about the 128-bit key. This leaves about 28 possible master key values.
These are easy to enumerate: For each master key block we create a list of all
possible values. For those master key blocks that influence some of the known
sub-keys, we try all 216 possible values and discard those that don’t match the
known sub-key bits. We will be left with 2 master key blocks that are fully known,
4 master key blocks that are partially known, and 2 master key blocks that are
unknown. The cartesian product of these 8 lists enumerates the possible values
for the master key.

Using an exhaustive search over these possible master key values, we can expect
to find the entire 128-bit master key after at most 2*® tries, with an expected
workload of 247 tries.
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3 A second attack

Our second attack uses the observation that the Akelarre round function has a lot
of excellent differential characteristics. In fact, any 64-bit pattern repeated once
to form a 128-bit word gives a differential 1-round characteristic with probability
1, and the output differential is a rotation of the input differential. Thus, the
Akelarre round function has 2% 1-round differential characteristics with proba-
bility 1.

The set of differences we are particularly interested in are those with exactly 2
one bits, where the bits are 64 bit-positions apart. If such a differential occurs
during the rounds we can easilly detect this from the ciphertext. So if we use an
input differential that flips one bit in X3 and the corresponding bit in X7, we can
detect if the flipped bit in X; resulted in the same bit being flipped in the output
of the input transformation. This gives us one bit of information about the first
key block of the input transformation.

Using 63 chosen plaintexts, we can recover the same 62 blts of information about
the key of the input transformation as we did in the previous attack, but now
without any exhaustive searching. Once we have these key bits, we can generate
all 62 differentials we are interested in, and use these to recover the 62 bits of the
output transformation key we found in the first attack, again without exhaustive
searching. Furthermore, we can observe the sum effect of all the 128-bit rotates
modulo 64, which gives us 6 more bits of information about the expanded key.
Using some fairly straightforward precomputations this reduces the work load of
the exhaustive master-key search by a factor of 64, giving us a maximum of 242
tries and 2%! tries on average before the key is found.

As about half of our differential attempts in the first half of this attack resulted
in the desired differential pattern during the rounds, we don’t have to regenerate
all 62 interesting differentials to find the 62 key bits of the output transformation,
but (on average) only 31 of them. This reduces the expected number of required
plaintexts to less than 100.

Further refinements are possible if we use the fact that the output transformation
key blocks are not independent. of the input transformation key blocks. Using this
information, we can further reduce the number of required plaintexts.

4 Fixing Akelarre

There are three obvious weaknesses in Akelarre that we exploited in our attack.
The round function is parity-preserving, which allows us to attack the input and
output transformation keys irrespective of the complexity of the addition-rotation
structure, and irrespective of the number of rounds. The only elementary oper-
ation that Akelarre employs that is not parity-preserving is the addition modulo
232, Replacing the XORs used to mix the output of the addition-rotation structure
with the data blocks by additions would eliminate this property.
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The differential characteristics again work irrespective of the number of rounds or
the complexity of the addition-rotation structure. These differential characteris-
tics can be broken up by replacing the rotation at the beginning of a round with
a different function that does not preserve our characteristic patterns.

The key schedule is especially weak. Learning one bit of any sub-key gives im-
mediate information about the master-key, although the designers state that the
key schedule was explicitly designed to avoid this property. The main problem is
the use of 16-bit blocks without any diffusion between the key blocks. The 16-bit
block size does not allow any one-wayness properties. The only fix would seem
to design an entirely new key schedule. One possible solution is to derive the
sub-keys from a cryptographically strong pseudo-random generator which uses
the master key as seed.

Even with these fixes it is unclear how strong the fixed Akelarre cipher would be.

5 Conclusions

For a 128-bit block cipher, Akelarre is disappointingly weak. The amount of work
necessary for a successful attack is three or four orders of magnitude less than that
of attacking DES. As such, Akelarre is not suitable for applications that require
even a medium level of security. And while the algorithm may be repairable, it
does not offer any obvious speed advantages over more established alternatives.

The weaknesses that we have found do not inspire confidence in the design process
used to create Akelarre. Even if all these weaknesses were to be fixed, the resulting
cipher would still be tainted by an apperently ad-hoc design process and leave
doubt about other as yet undiscovered weaknesses. Therefore, we recommend
that the Akelarre design be abandoned. : »

Since the original publication the authors have published a new version with an
improved key schedule [AGMP97]. We have not investigated this new version in
any depth, but even the improved key schedule allows us to recover 31 bits of
information about the master key in a trivial manner.
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Abstract

At the SAC’96 a new iterated block cipher, Akelarre, was proposed. Akelarre uses
components of the block ciphers RC5 and IDEA and is conjectured :strong with four
rounds. This paper shows that Akelarre with any number of rounds is weak even under
a ciphertext only attack. This illustrates that mixing two (presumably) strong ciphers is

not always a good idea.

1 Introduction

At the SAC’96 a new block cipher, Akelarre, was proposed [1]. Akelarre is an iterated cipher,
which uses components of the block ciphers RC5[4] and IDEA[2]. A comparison is made to
these block ciphers in favor of Akelarre. In the following we will show that Akelarre is a weak

block cipher with any number of rounds. The paper is organised as follows. § 2 contains a

*F.W.O. research assistant, sponsored by the Fund for Scientific Research - Flanders (Belgium)
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short description of Akelarre with the details necessary for our attacks; we refer to [1] for the
full description. In § 3 we describe the main weakness of Akelarre, which forms the basis of
our attacks. In § 4 a known plaintext attack and a ciphertext only attack are given and § 5

contains our concluding remarks.

2 Description of Akelarre

Akelarre [1] is a 128-bit block cipher. The key length is variable, but always a multiple of 64

bits. Akelarre has a structure similar to IDEA [2]. The main differences are the following.
o Akelarre uses 32-bit words instead of 16-bit words.

¢ The multiplication-addition structure is replaced by a complex addition-rotation struc-

ture (AR-structure).
¢ No modular multiplications are used.

e In the round transformation of IDEA there are key additions inside and outside the

MA-structure, in Akelarre there are only key additions in the AR-structure.
e The key scheduling is more complicated and difficult to invert.

The AR-structure of Akelarre consists of 12 31-bit data dependent rotations and 12 key
additions. This structure is reminiscent of the RC5 [4] round operation. Akelarre has an input
transformation, a@n output transformation and a variable number of rounds. It is proposed
with four rounds. Figure 1 shows Akelarre with one round. To simplify notation a different
numbering for the round keys has Been adopted. Our attacks are independent of the 12 round

keys in each AR-structure, which therefore are denoted Z, for round r.
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Figure 1: Computational graph of Akelarre.

The plaintext is denoted z; || z2 || z3 || z4. where ’||” denotes concatenation of bit strings.
The input transformation consists of adding modulo 232 respectively exoring the key words
21,...,24 to the plaintext, according to Figure 1. The input of round r will be denoted

z] || 25 ]| z5 || 3,7 = 1,... R, The round transformation for round i is as follows.

ui |l ws |l ubllug = rot,i(al| b 2h]=d) 1)
(ti,t2) = AR(u} & uj,uj @ uj) 2)
gl = ey (3a)
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i = W ot (3b)
2t = Wt (3¢c)

a:i"'l = ui@tg (3d)

where rot,: is a key dependent 128-bit rotation by r* positions. The inputs of the output

R+1

“ transformation are denoted z7*!. The output transformation consists of adding modulo 2%

respectively exoring the key words zs, ..., 2.

3 Weakness of the Round Transformation

In this section we describe the main observation to be used in our attacks. The round

transformation of Akelarre exhibits an invariant relation between the input and the output.

oM e 0ol = (7 0 65" 6 ut)

- I‘Ot,.i mod 64((z§ @ z;i) “ (3312 @ :l!;))
After R rounds this is
@ @ o) || (25 @ &) = rot,r-1 ((21 @ 23) || (23 © 23)) ,

where s® = (1R, ') mod 64. The input and output transformation destroy this invari-
ant. Let s = sf 4 7R+l where the last term denotes the rotation amount in the output

transformation. For the whole block cipher the relation is

((y1— 25) D y3 D 27) || ((ya4 — 28) © Y2 D 26)
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= rots(((z1+ 21) ® 23 D z3) || (za + 24) © 22 © 22)) , 4

If the keys 2;,4 = 1,...8 and s” are known, it is possible to calculate the exor of two halves
of any plaintext block from the exor of the two halves of the corresponding ciphertext block.
This situation is comparable to an encryption with a one time pad where the key is used
twice. If the plaintext contains enough redundancy, it can be uniquely determined.

As we will show in the following section, it is possible to determine the keys of (4).
Once these keys have been determined the attacker gets immediate information about the
plaintexts from intercepted ciphertexts. We first describe a known plaintext attack then a
ciphertext only attack. Both attacks assume that some statistics of the plaintext are known.
If the encrypted text is an English text, a LaTeX document, or even consists of random

ASCIl-characters this gives enough redundancy to recover the key.

4 Cryptanalysis of Akelarre

We describe two attacks that do not recover the complete Akelarre key, but give enough infor-
mation about the key to allow the cryptanalyst to recover the plaintexts from the ciphertexts.
4.1 A Known Plaintext Attack

4.1.1 Recovering the keys

Equation (4) is an equation in 64 bits, containing one unknown rotation and eight unknown
32-bit key words. Five known plaintexts and their ciphertexts give enough information to
solve the equations for the unknown key bits. This can be done very efficiently by guessing a

value for s and then solve for the z’s, starting from the least significant bits. Four known
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R can take only 128

plaintexts are used to solve the equations and the fifth to verify. Since s
different values, the work factor of this approach is very small.
The keys 21, 24, 25, 2 and s can be determined uniquely. Since only exor information is

available, it is not possible to determine 2, 23, 2 and 27 uniquely. Depending on the value of

sPitis possible to determine 2o @ zg and 23 @ 27, or z2 @ 27 and 23 @ zg.

4.1.2 Recovering plaintexts

After recovering the keys as described in the previous section, the cryptanalyst can examine
new ciphertexts and try to recover the plaintexts from them. This will only be possible if
the plaintext contains some redundancy. To simplify the discussion we assume that s® = 0.

Equation (4) is then:

(Z14+2)®r3 = (N1—25)OY3D 27D 23 (52)

(za+2)B22 = (Ya— )00 2%B2n. (5b)

The right hand sides of (5) are known. A cfyptanalyst who tries to determine z; || z2 || 3| z4,
faces a problem that has a strong resemblance to the decryption of a one time pad where the
key has been used twice. The situation is a bit more complex, because there are actuall_y two
pads used, one for the even numbered words and one for the odd numbered words. If the

right hand sides are denoted k; and k4, the plaintexts are given by

z1ll2z||zallza = al|b]| ((a+21) @ k1) || (0® ka) — 24) ,
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where a and b can take every value. If the plaintext contains enough redundancy, this problem
can be solved. Even if the redundancy of the plaintext is small, there is a leak of plaintext

information to the ciphertext.

4.2 A Ciphertext Only Attack

It is possible to recover the eight key words z; and s using only statistical information on
the distribution of the plaintext. Afterwards the approach of the previous section can be used

to recover plaintexts.

4.2.1 Recovering s*

If the plaintext consists of ASCII characters, the most significant bit of every byte will be zero
(or with probability close to one for an extended set of ASCII characters). In the following
we assume that the most significant bit of every byte is a zero bit. Exoring of some bytes
with the bytes of the keys 25, 23, 26 and 27 will keep these most significant bits constant. Even
after the addition of 21, 24, z5 and 2g these bits will be biased with a high probability. By
observing the ciphertexts it is possible to see where the almost constant bits have moved to.
In this way s mod 8 can be determined. Computer experiments have shown that with 5000
ciphertexts the success rate is close to 1.

Once s® is known modulo eight, there are four possibilities left modulo 32. The rest of
the attack is simply repeated for every possible value. Note that the addition becomes less
and less linear for more significant bits. This probably allows to determine s® modulo 32 in

a more efficient way than just guessing.
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4.2.2 Recovering the z; keys

Once the rotation modulo 32 is known, it can be partially compensated for by applying the
inverse rotation to the ciphertexts and the keys of the output transformation. In the further
analysis we assume that s® = 0 mod 32 because this makes the discussion much easier to

follow. Equation (4) can be written as follows.

(yl - 25) &) U3 D2y = (xv + zv) & Ty, &) Zyy (63‘)

(Ys— )Y ®2 = (Tuw+ 2w) ® Tw, © 2w, | (6b)

The parameters (v, vy, w, wo) can take the values (1,3,4,2) and (4,2,1,3). The exact value

R We assume that (v,vs,w,w3) = (1,3,4,2). Since the attack uses only

depends on s
information on the distribution of the plaintexts and not on their actual value, it will also
work if this assumption is wrong. The only visible effect will be that the keys have been
labeled erroneously. When the keys are used to recover plaintext both ;;ossibilities should be
checked.

The attack takes one equation of (6) at a time. We assume here that the plaintext consists
of bytes with the most significant bit equal to 0. In this case it is possible to recover the keys
byte by byte, starting with the least significant byte. In the remainder of the analysis the
variables y;, 2;, z; will stand for the byte that is examined.

The cryptanalyst uses the information he has on the distribution of the plaintext bytes to
build an off-line table that contains for every value of z; the distribution of (:c1 +2;)®z3. These
distributions are called the theoretical distributions. Afterwards the cryptanalyst collects

ciphertexts and calculates for every possible value of z5 and 27 @ z3 the values (y; —25) Dys @

27 @ z3. This gives a set of experimentally measured distributions. If enough ciphertexts are
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used the correct values for 2y, 25 and 23 @ 27 will yield the ciosest match between a theoretical
and an experimental distribution.

The number of required ciphertexts depends on the distribution of the plaintexts. We
did experiments with two distributions: real English text and random bytes (with the most
significant bit set to zero). The ciphertext requirements can be reduced significantly if the
key ranking technique [3] is used: not only the most probable key is given as output, but a
small set of key values with high probability to contain the correct value. For the case of
English text, using 1000 ciphertexts, s® mod 8 can be determined with probability 0.7 and
the correct values for one byte of each of 2, 25, and 23 @ 27 are in 90% of the cases among
the 4 most suggested values (out of 22 possible values). It is reasonable to assume that the
probability of successes will be the same for the attacks on the remaining key bytes. Thus, for
the case of English text with 1000 ciphertexts we estimate that the correct values of all four
bytes of each of 21, z5, and 23 @ 27 will be amongst the 4* = 256 most suggested values (out
of 2% values) with success probaBility 0.94 =~ 0.66. The results are sur-nma,rized in Table 1.
As can be seen the recovery of the keyed rotation works better for random ASCII bytes than
for Engliéh text, whereas the recovery of the keys z; works worse. We expect that success

probability of the key recovering part of our attack will increase significantly when using more

texts.
# texts recovering s ﬁlbd 8 recovering z;
English text 1000 0.70 0.66
Random bytes | 1000 0.90 0.00
English text 5000 0.78 1.00
Random bytes | 5000 1.00 0.03

Table 1: Success probability for the ciphertext only attack on Akelarre when the plaintext
is known to be English ASCII-coded text; and when the plaintext consists of random bytes,
with the most significant bit set to zero.
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Subsequently, the approach of the previous section can be used to recover plaintexts.
However, note that the attacker must repeat this attack for both sets of values for (v, v, w, w2)

of Equation 6.

5 Conclusion

We presented realistic attacks on the block cipher Akelarre, which mixes features of the block
cipher IDEA and RC5. Our attacks are independent of the numbe.r of rounds used in the
cipher and enable the recovery of a limitéd set of key bits. Once these bits have been found an
attacker can obtain the plaintexts of any intercepted ciphertexts, provided that the pla,i'ntext
space is redundant. Akelarre and our attacks illustrate that mixing the components of two

presumably secure block ciphers does not always yield a strong new block cipher.
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